
123

5. Data Types and Operators

Key concepts

• Concept of Data Types

• C++ Data Types

• Fundamental Data Types

• Variables

• Operators

o Arithmetic

o Relational

o Logical,

o Input/Output

o Assignment

• Expressions

o Arithmetic

o Relational

o Logical

• Statements

o Declaration

o Assignment

o Input /Output

In the previous chapter we learned the basic

building blocks of C++ language. As we know,

data processing is the main activity carried out in

computers. All programming languages give

importance to data handling. The input data is

arranged and stored in computers using some

structures. C++ has a predefined template for

storing data. The stored data is further processed

using proper operators. In this chapter, we will

explore the main concepts of the C++ language

like data types, operators, expressions and

statements in detail.

5.1 Concept of data types

Consider the case of preparing the progress card

of a student after an examination. We need data

like admission number, roll number, name,

address, scores in different subjects, the grades

obtained in each subject, etc. Further, we need

to display the percentage of marks scored by

the student and the attendance in percentage. If

we consider a case of scientific data processing,

it may require data in the form of numbers

representing the velocity of light (3×108 m/s),

acceleration due to gravity (9.8 m/s), electric

charge of an electron (-1.6×10-19), etc.

5

124

From the above cases, we can infer that data can be of different types like character,

integer number, real number, string, etc. In the last chapter we saw that any valid character

of C++ enclosed in single quotes represents character data in C++. Numbers without

fractions represent integer data. Numbers with fractions represent floating point data

and anything enclosed in double quotes represents a string data. Since the data to be

dealt with are of many types, a programming language must provide ways and facilities

to handle all types of data. C++ provides facilities to handle different types of data by

providing data type names. Data types are the means to identify the nature of the data

and the set of operations that can be performed on the data.

In Chapter 3, we used variables to refer data in algorithms. Variables are also used in

programs for referencing data. When we write programs in the C++ language, variables

are to be declared before their use. Data types are necessary to declare these variables.

5.2 C++ data types

C++ provides a rich set of data types. Based on nature, size and associated operations,

they are classified as shown in Figure 5.1. Basically, they are classified into fundamental

or built-in data types, derived data types and user-defined data types.

Fig. 5.1: Classification of C++ data types

Fundamental data types

Fundamental data types are defined in C++ compiler. They are also known as built-in

data types. They are atomic in nature and cannot be further broken into small units. The

125

5. Data Types and Operators

five fundamental data types in C++ are char, int, float, double and void.

Among these, int and char come under integral data type as they can handle only

integers. The numbers with fractions (real numbers) are generally known as floating

type and are further divided into float and double based on precision and range.

User-defined data types

C++ is flexible enough to allow programmers to define their own data types. Structure

(struct), enumeration (enum), union, class, etc. are examples for such data

types.

Derived data types

Derived data types are constructed from fundamental data types through some grouping

or alteration in the size. Arrays, pointers, functions, etc. are examples of derived data

types.

5.3 Fundamental data types

Fundamental data types are basic in nature. They cannot be further broken into small

units. Since these are defined in compiler, the size (memory space allocated) depends

on the compiler. We use the compiler available in GCC and hence the size as well as the

range of data supported by the data type are given accordingly. It may be different if

you use other compilers like Turbo C++ IDE. The five fundamental data types are

described below:

int data type (for integer numbers)

Integers are whole numbers without a fractional part. They can be positive, zero and

negative. The keyword int represents integer numbers within a specific range. GCC

allows 4 bytes of memory for integers belonging to int data type. So the range of

values that can be represented by int data type is from -2147483648 to +2147483647.

The data items 6900100, 0, -112, 17, -32768, +32767, etc. are examples of int

data type. The numbers 2200000000 and -2147483649 do not belong to int data

type as they are out of the allowed range.

char data type (for character constants)

Characters are the symbols covered by the character set of the C++ language. All

letters, digits, special symbols, punctuations, etc. come under this category. When these

characters are used as data they are considered as char type data in C++. We can

say that the keyword char represents character literals of C++. Each char type data

is allowed one byte of memory. The data items 'A', '+', '\t', '0', etc. belong to char

data type. The char data type is internally treated as integers, because computer

126

recognises the character through its ASCII code. Character data is stored in the memory

with the corresponding ASCII code. As ASCII codes are integers and need to be

stored in one byte (8 bits), the range of char data type is from -128 to +127.

float data type (for floating point numbers)

Numbers with a fractional part are called floating point numbers. Internally, floating

point numbers are stored in a manner similar to scientific notation. The number 47281.97

is expressed as 0.4728197×105 in scientific notation. The first part of the number,

0.4728197 is called the mantissa. The power 5 of 10 is called exponent. Computers

typically use exponent form (E notation) to represent floating point values. In E notation,

the number 47281.97 would be 0.4728197E5. The part of the number before the E is

the mantissa, and the part after the E is the exponent. In C++, the keyword float is

used to denote such numbers. GCC allows 4 bytes of memory for numbers belonging

to float data type. The numbers of this data type has normally a precision of 7 digits.

double data type (for double precision floating point numbers)

In some cases, floating point numbers require more precision. Such numbers are

represented by double data type. The range of numbers that can be handled by

float type is extended by this data type, because it consumes double the size of

float data type. In C++, it is assured that the range and precision of double will be

at least as big as float. GCC reserves 8 bytes for storing a double precision value.

The precision of double data type is generally 15 digits.

void data type (for null or empty set of values)

The data type void is a keyword and it indicates an empty set of data. Obviously it

does not require any memory space. The use of this data type will be discussed in the

next chapter. Table 5.1 shows the size and range of the fundamental data types of C++

based on GCC. The size of fundamental data types decreases in the order double,

float, int and char.

Character

Integer

Floating point number

Double precision

floating point number

Null data

1 byte

4 bytes

4 bytes

8 bytes

0 bytes

 -128 to 127

 -2147483648 to +2147483647

-3.4×10+/-38 to +3.4×10+/-38 with

approximately 7 significant digits

-1.7×10+/-308 to +1.7×10+/-308 with

approximately 15 significant digits

Empty set

Name Description Size Range

char

int

float

double

void

Table 5.1: Data types and their characteristics

127

5. Data Types and Operators

5.4 Variables

Memory locations are to be identified to refer data. Variables are the names given to

memory locations. These are identifiers of C++ by which memory locations are

referenced to store or retrieve data. The size and nature of data stored in a variable

depends on the data type used to declare it. There are three important aspects for a

variable.

i. Variable name

It is a symbolic name (identifier) given to the memory location through which the content

of the location is referred to.

ii. Memory address

The RAM of a computer consists of collection of cells each of which can store one byte

of data. Every cell (or byte) in RAM will be assigned a unique address to refer it. All the

variables are connected to one or more memory locations in RAM.

The base address of a variable is the starting address of the allocated

memory space. In the normal situation, the address is given implicitly

by the compiler. The address is also called the L-value of a variable.

In Figure 5.2 the base address of the variable Num is 1001.

iii. Content

The value stored in the location is called content of the variable. This is also called the

R-value of the variable. Type and size of the content depends on the data type of the

variable.

Figure 5.2 shows the memory representaion of a variable. Here the variable name is

Num and it consumes 4 bytes of memory at memory addresses 1001, 1002, 1003 and

1004. The content of this variable is 18. That is L-value of Num is 1001 and R-value is

18.

5.5 Operators

Operators are tokens constituted by predefined symbols that can trigger computer to

carry out operations. The participants of an operation are called operands. An operand

may be either a constant or a variable.

The values listed above are only sample values to give you a general

idea of how the types differ. The values for any of these entries may

be different on your system

1001 1002 1003 1004

Num
Fig 5.2 : Memory
representation
of a Variable

18

128

For example, a+b triggers an arithmetic operation in which + (addition) is the operator

and a, b are operands. Operators in C++ are classified based on various criteria.

Based on number of operands required for the operation, operators are classified into

three. They are unary, binary and ternary.

Unary operators

A unary operator operates on a single operand.

Commonly used unary operators are unary+

(positive) and unary- (negative). These are used

to represent the signs of a number. If we apply

unary+ operator on a signed number, the existing

sign will not change. If we apply unary- operator

on a signed number, the sign of the existing

number will be negated. Examples of the use of

unary operators are given in Table 5.2.

Some other examples of unary operators are increment (++) and decrement (--)

operators. We will discuss these operators later in this chapter.

Binary operators

Binary operators operate on two operands. Arithmetic operators, relational operators,

logical operators, etc. are the commonly used binary operators.

Ternary operator

Ternary operator operates on three operands. The typical example is the conditional

operator (?:).

The operations triggered by the operators mentioned above will be discussed in detail

in the coming sections and some of them will be dealt with in Chapter 7. Based on the

nature of the operation, operators are classified into arithmetic, relational, logical, input/

output, assignment, short-hand, increment/decrement, etc.

5.5.1 Arithmetic operators

Arithmetic operators are defined to perform basic arithmetic operations such as addition,

subtraction, multiplication and division. The symbols used for this are +, -, * and /

respectively. C++ also provides a special operator % (modulus operator) for getting

remainder during division. All these operators are binary operators. Note that + and -

are used as unary operators too. The operands required for these operations are numeric

data. The result of these operations will also be numeric. Table 5.3 shows some examples

of binary arithmetic operations.

Table 5.2 : Unary operators

Variable Unary + Unary-

x +x -x

8 8 -8

0 0 0

-9 -9 9

129

5. Data Types and Operators

Modulus operator (%)

The modulus operator, also called as mod operator, gives the remainder value during

arithmetic division. This operator can only be applied over integer operands. Table 5.4

shows some examples of modulus operation. Note that the sign of the result is the sign

of first operand. Here in the table the first operand is x.

10 5 15 5 50 2

-11 3 -8 -14 -33 -3.66667

11 -3 8 14 -33 -3.66667

-50 -10 -60 -40 500 5

Table 5.3 : Arithmetic operators

Variable Variable Addition Subtraction Multiplication Division

x y x + y x - y x * y x / y

10 5 0 100 100 0

5 10 5 32 11 10

-5 11 -5 11 -5 1

5 -11 5 -11 5 -1

-11 -5 -1 -5 -11 -5

Table 5.4 : Operations using modulus operator

Variable Variable Modulus Variable Variable Modulus

x y Operation x y Operation

x % y x % y

Check yourself

1. Arrange the fundamental data types in ascending order of size.

2. The name given to a storage location is known as ___________.

3. Name a ternary operator in C++.

4. Predict the output of the following operations if x = -5 and y = 3 initially

a. -x f. x+y

b. -y g. x%y

c. -x + -y h. x/y

d. -x - y i. x * -y

e. x % -11 j. -x % -5

130

5.5.2 Relational operators

Relational operators are used for comparing numeric data. These are binary operators.

The result of any relational operation will be either True or False. In C++, True is

represented by 1 and False is represented by 0. There are six relational operators in

C++. They are < (less than), > (greater than), == (equal to), <= (less than or equal to),

>= (greater than or equal to) and != (not equal to). Note that equality checking requires

two equal symbols (==). Some examples for the use of various relational operators

and their results are shown in Table 5.5:

5.5.3 Logical operators

Using relational operators, we can compare values. Examples are 3<5, num!=10, etc.

These comparison operations are called relational expressions in C++. In some cases,

two or more comparisons may need to be combined. In Mathematics we may use

expressions like a>b>c. But in C++, it is not possible. We have to separate this into

two, as a>b and b>c and these are to be combined using the logical operator &&, i.e.

(a>b)&&(b>c). The result of such logical combinations will also be either True or

False (i.e. 1 or 0). The logical operators are && (logical AND), || (logical OR) and !

(logical NOT).

Logical AND (&&) operator

If two relational expressions El and E2 are

combined using logical AND (&&) operation, the

result will be 1 (True) only if both E1 and E2 have

values 1 (True). In all other cases the result will

be 0 (False). The results of evaluation of &&

operation for different possible combination of

inputs are shown in Table 5.6

Examples: 10>5 && 15<25 evaluates to 1 (True)

 10>5 && 100<25 evaluates to 0 (False)

12 5 0 1 0 1 1 0

-7 2 1 0 1 0 1 0

4 4 0 0 1 1 0 1

Table 5.5 : Operations using relational operators

m n m<n m>n m<=n m>=n m!=n m==n

Table 5.6 : Logical AND

E1 E2 E1&&E2

0 0 0

0 1 0

1 0 0

1 1 1

131

5. Data Types and Operators

Logical OR (||) operator

If two relational expressions El and E2 are

combined using logical OR (||) operations, the

result will be 0 (False) only if both El and E2 are

having value 0 (False). In all other cases the result

will be 1 (True). The results of evaluation of ||

operation for different possible combination of

inputs are shown in Table 5.7

Examples: 10>5 || 100<25 evaluates to 1 (True)

 10>15 || 100<90 evaluates to 0 (False)

Logical NOT operator (!)

This operator is used to negate the result of a relational

expression. This is a unary operation. The results of evaluation

of ! operation for different possible inputs are as shown in

Table 5.8.

Examples: !(100<2) evaluates to 1 (True)

 !(100>2) evaluates to 0 (False)

5.5.4 Input / Output operators

Usually input operation requires user's intervention. In the process of input operation,

the data given through the keyboard is stored in a memory location. C++ provides >>

operator for this operation. This operator is known as get from or extraction operator.

This symbol is constituted by two greater than symbols.

Similarly in output operation, data is transferred from RAM to an output device. Usually

the monitor is the standard output device to get the results directly. The operator << is

used for output operation and is called put to or insertion operator. It is constituted

by two less than symbols.

5.5.5 Assignment operator (=)

When we have to store a value in a memory location, assignment operator (=) is used.

This is a binary operator and hence two operands are required. The first operand

should be a variable where the value of the second operand is to be stored. Some

examples are shown in Table 5.9.

Table 5.7 : Logical OR

E1 E2 E1 � E2

0 0 0

0 1 1

1 0 1

1 1 1

Table 5.8 :

Logical NOT

E1 !E1

0 1

1 0

132

We discussed the relational operator == in Section 5.5.2. See the difference between

these two operators. The = symbol assigns a value to a variable, whereas == symbol

compares two values and gives True or False as the result.

5.6 Expressions

An expression is composed of operators and operands. The operands may be either

constants or variables. All expressions can be evaluated to get a result. This result is

known as the value returned by the expression. On the basis of the operators used,

expressions are mainly classified into arithmetic expressions, relational expressions and

logical expressions.

5.6.1 Arithmetic expressions

An expression in which only arithmetic operators are used is called arithmetic expression.

The operands are numeric data and they may be variables or constants. The value

returned by these expressions is also numeric. Arithmetic expressions are further classified

into integer expressions, floating point (real) expressions and constant expressions.

Integer expressions

If an arithmetic expression contains only integer operands, it is called integer expression

and it produces integer result after performing all the operations given in the expression.

For example, if x and y are integer variables, some integer expressions and their results

are shown in Table 5.10.

Item Description

a=b The value of variable b is stored in a

a=3 The constant 3 is stored in variable a

Table 5.9 : Assignment operator

5 2 7 2 5 7 1

6 3 9 2 12 7 0

Table 5.10 : Integer expressions and their results

x y x + y x / y -x + x * y 5 + x / y x % y

Note that all the above expressions produce integer values as the results.

Floating point expressions (Real expressions)

An arithmetic expression that is composed of only floating point data is called floating

point or real expression and it returns a floating point result after performing all the

133

5. Data Types and Operators

operations given in the expression. Table 5.11 shows some real expressions and their

results, assuming that x and y are floating point variables.

It can be seen that all the above expressions produce floating point values as the results.

In an arithmetic expression, if all the operands are constant values, then it is called

Constant expression. The expression 20+5/2.0 is an example. The constants like

15, 3.14, 'A' are also known as constant expressions.

5.6.2 Relational expressions

When relational operators are used in an expression, it is called relational expression

and it produces Boolean type results like True (1) or False (0). In these expressions,

the operands are numeric data. Let us see some examples of relational expressions in

Table 5.12.

We know that arithmetic operators have a higher priority than relational operators. So

when arithmetic expressions are used on either side of a relational operator, arithmetic

operations will be carried out first and then the results are compared. The table contains

some expressions in which both arithmetic and relational operators are involved. Though

they contain mixed type of operators, they are called relational expressions since the

final result will be either True or False.

5.6.3 Logical expressions

Logical expressions combine two or more relational expressions with logical operators

and produce either True or False as the result. A logical expression may contain constants,

variables, logical operators and relational operators. Let us see some examples in Table

5.13.

5.0 2.0 7.0 2.5 5.0 7.5 12.5

6.0 3.0 9.0 2.0 12.0 7.0 12.0

Table 5.11 : Floating point expressions and their results

x y x + y x / y -x + x * y 5 + x / y x * x / y

5.0 2.0 1(True) 0(False) 1(True) 1 (True) 0 (False)

6 13 0(False) 0(False) 1(True) 0 (False) 1 (True)

Table 5.12 : Relational expressions and their results

x y x > y x == y x+y !=y x-2 == y+1 x*y == 6*y

134

5.7 Statements

Can you recollect the learning hierarchy of a natural language? Alphabet, words, phrases,

sentences, paragraphs and so on. In the learning process of C++ language we have

covered character set, tokens and expressions. Now we have come to the stage where

we start communication with the computer sensibly and meaningfully with the help of

statements. Statements are the smallest executable unit of a programming language.

C++ uses the symbol semicolon (;) as the delimiter of a statements. Different types of

statements used in C++ are declaration statements, assignment statements, input

statements, output statements, control statements, etc. Each statement has its own

purpose in a C++ program. All these statements except declaration statements are

executable statements as they possess some operations to be done by the computer.

Executable statements are the instructions to the computer. The execution of control

statements will be discussed in Chapter 7. Let us discuss the other statements.

Check yourself

1. Predict the output of the following operations if x=5 and y=3.

a. x>=10 && y>=4 f. x>=10 || y>=4

b. x>=1 && y>=3 g. x>=1 || y>=3

c. x>5 && y>=2 h. x>5 || y>=2

d. x<10 && y>2 i. x<10 || y>2

e. x<10 && y>x j. x<10 || y>x

2. Predict the output if p=5, q=3, r=2

a. p-q*r/2 c. p-q-r*2+p

b. p*q/r d. p+5*q+r*r/2

5.0 2.0 0 (False) 1 (True) 0 (False) 1 (True)

20 13 1 (True) 0 (False) 0 (False) 1 (True)

Table 5.13: Logical expressions and their results

x y x>=y && x==20 x==5||y==0 x==y && y+2==0 !(x==y)

135

5. Data Types and Operators

5.7.1 Declaration statements

Every user-defined word should be defined in the program before it is used. We have

seen that a variable is a user-defined word and it is an identifier of a memory location.

It must be declared in the program before its use. When we declare a variable, we tell

the compiler about the type of data that will be stored in it. The syntax of variable

declaration is:

 data_type <variable1>[, <variable2>, <variable3>, ...] ;

The data_type in the syntax should be any valid data type of C++. The syntax

shows that when there are more than one variables in the declaration, they are separated

by comma. The declaration statement ends with a semicolon. Typically, variables are

declared either just before they are used or at the beginning of the program. In the

syntax, everything given inside the symbols [and] are optional. The following statements

are examples for variable declaration:

int rollnumber;

double wgpa,avg_score;

The first statement declares the variable rollnumber as int type so that it will be

allocated four bytes of memory (as per GCC) and it can hold an integer number within

the range from -2147483648 to +2147483647. The second statement defines the

identifiers wgpa and avg_score as variables to hold data of double type. Each of

them will be allocated 8 bytes of memory. The memory is allocated to the variables

during the compilation of the program.

5.7.2 Assignment statements

When the assignment operator (=) is used to assign a value to a variable, it forms an

assignment statement. It can take any of the following syntax:

variable = constant;

variable1 = variable2;

variable = expression;

The first statement assigns the constant to variable, the second assigns the value of

variable2 to the variable1 and the last statement stores the result of the

expression in variable. The following are some examples of assignment statements:

a = 15; b = 5.8;

c = a + b; d = (a + b)*(c + d);

136

The left hand side (LHS) of an assignment statement must be a variable. During execution,

the expression at the right hand side (RHS) is evaluated first. The result is then assigned

(stored) to the variable at LHS.

Assignment statement can be chained for doing multiple assignments at a time. For

instance, the statement x=y=z=13; assigns the value 13 in three variables in the order

of z, y and x. The variables should be declared before this assignment. If we assign a

value to a variable, the previous value in it, if any, will be replaced by the new value.

5.7.3 Input statements

Input statement is a means that allows the user to store data in the memory during the

execution of the program. We saw that the get from or extraction operator (>>)

specifies the input operation. The operands required for this operator are the input

device and a location in RAM where the data is to be stored. Keyboard being a standard

console device, the stream (sequence) of data is extracted from the keyboard and

stored in memory locations identified by variables. Since C++ is an object oriented

language, keyboard is considered as the standard input stream device and is identified

as an object by the name cin (pronounced as 'see in'). The simplest form of an input

statement is:

streamobject >> variable;

Since we use keyboard as the input device, the streamobject in the syntax will be

substituted by cin. The operand after the >> operator should strictly be a variable.

For example, the following statement reads data from the keyboard and stores in the

variable num.

cin >> num;

Figure 5.3 shows how data is extracted from keyboard and stored in the variable.

Fig 5.3: Input procedure in C++

137

5. Data Types and Operators

5.7.4 Output statements

Output statements make the results available to the users through any output device.

The put to or insertion operator (<<) is used to specify this operation. The operands

in this case are the output device and the data for the output. The syntax of an output

statement is:

streamobject << data;

The streamobject may be any output device and the data may be a constant, a

variable or an expression. We use monitor as the commonly used output device and

C++ identifies it as an object by the name cout (pronounced as 'see out'). The

following are some examples of output statement with monitor as the output device:

cout << num;

cout << "hello friends";

cout << num+12;

The first statement displays the content in the variable num. The second statement

displays the string constant "hello friends" and the last statement shows the

value returned by the expression num+12 (assuming that num contains numeric value).

Figure 5.4 shows how data is inserted into the output stream object (monitor) from the

memory location num.

Fig. 5.4: Output procedure in C++

The tokens cin and cout are not keywords. They are predefined

words that are not part of the core C++ language, and you are allowed

to redefine them. They are defined in libraries required by the C++

language standard. Needless to say, using a predefined identifier for

anything other than its standard meaning can be confusing and dangerous and such

practices should be avoided. The safest and easiest practice is to treat all predefined

identifiers as if they were keywords.

138

Cascading of I/O operators

Suppose you want to input three values to different variables, say x, y and z. You may

use the following statements:

cin>>x;

cin>>y;

cin>>z;

But these three statements can be combined to form a single statement as given below:

cin>>x>>y>>z;

The multiple use of input or output operators in a single statement is called cascading

of I/O operators. In the use of cascading of input operators, the values input are

assigned to the variables from left to right. In the example cin>>x>>y>>z; the first

value is assigned to x, the second to y and the third to z. While entering values to the

variables x, y and z during execution the values should be separated by Space bar,

Tab or Carriage return.

Similarly, if you want to display the contents of different variables (say x, y, z) use the

following statement:

cout<<x<<y<<z;

If variables, constants and expressions appear together for output operations, the above

technique can be applied as in the following example:

cout<<"The number is "<<z;

While cascading output operators, the values for the output will be retrieved from right

to left. It is to be noted that both << and >> operators cannot be used in a single

statement.

 Let us sum up

Data types are means to identify the type of data and associated operations handling

it. Each data type has a specific size and a range of data. Data types are used to

declare variables. Different types of operators are available in C++ for various

operations. When operators are combined with operands (data), expressions are

formed. There are mainly three types of expressions - arithmetic, relational and

logical. Statements are the smallest executable unit of a program. Variable declaration

statements define the variables in the program and they will be allocated memory

space. The executable statements like assignment statements, input statements, output

statements, etc. help giving instructions to the computer.

139

5. Data Types and Operators

 Learning outcomes

After the completion of this chapter the learner will be able to

• identify the various data types in C++.

• choose appropriate variables.

• experiment with various operators.

• apply the various I/O operators.

• write various expressions and statements.

Very short answer type

1. What are data types? List all predefined data types in C++?

2. What is the use of void data type?

3. What is a constant?

4. What is dynamic initialisation of variables?

5. Define operators.

6. What is meant by a unary operation?

7. What is declaration statement?

8. What is the input operator ">>" and output operator "<<" called ?

9. What will be the result of a = 5/3 if a is (i) float (ii) int ?

10. Write an expression that uses a relational operator to return true if the variable

total is greater than or equal to final.

11. Given that i =4, j =5, k =2 what will be the result of following expressions?

(i) j <k (ii) j <j (iii) j <= k (iv) i == j (v) i == k

(vi) j > k (vii) j >= i (viii) j! = i (ix) j! = k (x) j <= k

12. What will be the order of evaluation for following expressions?

(i) i+5>=j-6 (ii) s+10<p-2+2*q

15. What will be the result of the following if ans is 6 initially?

(i) cout <<ans = 8 ; (ii) cout << ans == 8

Sample questions

140

Short answer type

1. What is a variable? List the two values associated with a variable.

2. Explain logical operators.

3. Find out the errors, if any, in the following C++ statements

(i) cout<< "a=" a; (v) cin >> "\n" >> y ;

(ii) m=5, n=l2;015 (vi) cout >> \n "abc"

(iii) cout << "x" ; <<x; (vii) a = b + c

(iv) cin >> y (viii) break = x

4. What is the role of relational operators? Distinguish between == and =.

Long answer type

1. Explain the operators used in C++ in detail.

2. Explain different types of expressions in C++.

