
141

6. Introduction to Programming

Key concepts

• Structure of C++ Program

o Pre-processor directives

o Header files

o A sample C++ program

• Stylistic guidelines for

variables and comments

• Variable initialization

• Use of const access modifier

• Type modifiers

• More operators

o Arithmetic assignment

o Increment and decrement

o Precedence of operators

• Type conversions

o Implicit type conversion

o Explicit type conversion

We have familiarized ourselves with the IDE

used for C++ program. In the last chapter we

discussed how operations can be expressed in

C++. We also learnt different types of

statements in C++ to give instructions to the

computer. We are now in a position to solve

simple problems by using these statements. But

a set of statements alone does not constitute a

program. A C++ program has a typical

structure. In this chapter we discuss the

structure of C++ programs and we write

programs accordingly. More operators are

introduced for making the programs compact

and the execution faster.

6.1 Structure of a C++ program

C++ program is a collection of one or more

functions. A function means a set of instructions

to perform a particular task referred to by a

name. Since there can be many functions in a

C++ program, they are usually identified by

unique names. The most essential function

needed for every C++ program is the main()

function. Let us look at the structure of a simple

C++ program.

6

142

#include <headerfile>

using namespace identifier;

int main()

{

statements;

:

:

:

return 0;

}

The first line is called preprocessor directive and the second line is the namespace

statement. The third line is the function header which is followed by a set of statements

enclosed by a pair of braces. Let us discuss each of these parts of the program.

6.1.1 Preprocessor directives

A C++ program starts with pre-processor directives. Preprocessors are the compiler

directive statements which give instruction to the compiler to process the information

provided before actual compilation starts. Preprocessor directives are lines included in

the code that are not program statements. These lines always start with a # (hash)

symbol. The preprocessor directive #include is used to link the header files available

in the C++ library by which the facilities required in the program can be obtained. No

semicolon (;) is needed at the end of such lines. Separate #include statements

should be used for different header files. There are some other preprocessor directives

such as #define, #undef, etc.

6.1.2 Header files

Header files contain the information about functions, objects and predefined derived

data types and are available along with compiler. There are a number of such files to

support C++ programs and they are kept in the standard library. Whichever program

requires the support of any of these resources, the concerned header file is to be included.

For example, if we want to use the predefined objects cin and cout, we have to use

the following statement at the beginning of the program:

#include <iostream>

The header file iostream contains the information about the objects cin and cout.

Eventhough header files have the extension .h, it should not be specified for GCC.

But the extension is essential for some other compilers like Turbo C++ IDE.

6.1.3 Concept of namespace

A program cannot have the same name for more than one identifier (variables or functions)

in the same scope. For example, in our home two or more persons (or even living

143

6. Introduction to Programming

beings) will not have the same name. If there are, it will surely make conflicts in the

identity within the home. So, within the scope of our home, a name should be unique.

But our neighbouring home may have a person (or any living being) with the same name

as that of one of us. It will not make any confusion of identity within the respective

scopes. But an outsider cannot access a particular person by simply using the name;

but the house name is also to be mentioned.

The concept of namespace is similar to a house name. Different identifiers are associated

to a particular namespace. It is actually a group name in which each item is unique in its

name. User is allowed to create own namespaces for variables and functions. We can

use an identifier to give a name to the namespace. The keyword using technically tells

the compiler about a namespace where it should search for the elements used in the

program. In C++, std is an abbreviation of 'standard' and it is the standard namespace

in which cout, cin and a lot of other objects are defined. So, when we want to use

them in a program, we need to follow the format std::cout and std::cin. This

kind of explicit referencing can be avoided with the statement using namespace std; in

the program. In such a case, the compiler searches this namespace for the elements

cin, cout, endl, etc. So whenever the computer comes across cin, cout, endl

or anything of that matter in the program, it will read it as std::cout, std::cin or

std::endl.

The statement using namespace std; doesn't really add a function, it is the

#include <iostream> that "loads" cin, cout, endl and all the like.

6.1.4 The main() function

Every C++ program consists of a function named main(). The execution starts at

main() and ends within main(). If we use any other function in the program, it is

called (or invoked) from main(). Usually a data type precedes the main() and in

GCC, it should be int.

The function header main() is followed by its body, which is a set of one or more

statements within a pair of braces { }. This structure is known as the definition of the

main() function. Each statement is delimited by a semicolon (;). The statements may

be executable and non-executable. The executable statements represent instructions to

be carried out by the computer. The non-executable statements are intended for compiler

or programmer. They are informative statements. The last statement in the body of

main() is return 0;. Even though we do not use this statement, it will not make

any error. Its relavance will be discussed in Class XII.

C++ is a free form language in the sense that it is not necessary to write each statement

in new lines. Also a single statement can take more than one line.

144

6.1.5 A sample program

Let us look at a complete program and familiarise ourselves with its features, in detail.

This program on execution will display a text on the screen.

#include<iostream>

using namespace std;

int main()

{

cout<<"Hello, Welcome to C++";

return 0;

}

The program has seven lines as detailed below:

Line 1: The preprocessor directive #include is used to link the header file

iostream with the program.

Line 2: The using namespace statement makes available the identifier cout in

the program.

Line 3: The header of the essential function for a C++ program, i.e., int main().

Line 4: An opening brace { that marks the beginning of the instruction set (program).

Line 5: An output statement, which will be executed when we run the program, to

display the text "Hello, Welcome to C++" on the monitor. The header

file iostream is included in this program to use cout in this statement.

Line 6: The return statement stops the execution of the main() function. This

statement is optional as far as main() is concerned.

Line 7: A closing brace } that marks the end of the program.

6.2 Guidelines for coding

A source code looks good when the coding is legible, logic is communicative and

errors if any are easily detectable. These features can be experienced if certain styles

are followed while writing program. Some guidelines are discussed below to write

stylistic programs:

Use suitable naming convention for identifiers

Suppose we have to calculate the salary for an employee after deductions. We may

code it as: A = B - C;

where A is the net salary, B the total salary and C total deduction. The variable names

A, B and C do not reflect the quantities they denote. If the same instruction is expressed

as follows, it would be better:

Net_salary = Gross_salary - Deduction;

145

6. Introduction to Programming

The variable names used in this case help us to remember the quantity they possess.

They readily reflect their purpose. This kind of identifiers are called mnemonic names.

The points given below are to be remembered in the choice of names:

• Choose good mnemonic names for all variables, functions and procedures.

e.g. avg_hgt, Roll_No, emp_code, SumOfDigits, etc.

• Use standardised prefixes and suffixes for related variables.

e.g. num1, num2, num3 for three numbers

• Assign names to constants in the beginning of the program.

e.g. float PI = 3.14;

Use clear and simple expressions

Some people have a tendency to reduce the execution time by sacrificing simplicity.

This should be avoided. Consider the following example. To find out the remainder

after division of x by n, we can code as: y = x-(x/n)*n;

The same thing is achieved by a simpler and more elegant piece of code as shown

below:

y = x % n;

So it is better to use simpler codes in programming to make the program more simple

and clear.

Use comments wherever needed

Comments play a very important role as they provide internal documentation of a program.

They are lines in code that are added to describe the program. They are ignored by the

compiler. There are two ways to write comments in C++:

Single line comment: The characters // (two slashes) is used to write single line

comments. The text appearing after // in a line is treated as a comment by the C++

compiler.

Multiline comments: Anything written within /* and */ is treated as comment so

that the comment can take any number of lines.

But care should be taken that no relevant code of the program is included accidently

inside the comment. The following points are to be noted while commenting:

• Always insert prologues, the comments in the beginning of a program that

summarises the purpose of the program.

• Comment each variable and constant declaration.

• Use comments to explain complex program steps.

146

• It is better to include comments while writing the program itself.

• Write short and clear comments.

Relevance of indentation

In computer programming, an indent style is a convention governing the indentation of

blocks of code to convey the program's structure, for good visibility and better clarity.

An indentation makes the statements clear and readable. It shows the levels of statements

in the program.

The usages of these guidelines can be observed in the programs given in a later section

of this chapter.

6.3 Variable initialisation

In the last chapter we discussed the significance of variables in programs. A variable is

associated with two values: L-value (its address) and R-value (its content). When a

variable is declared, a memory location with an address will be allocated and it is the L-

value of the variable. What will its content be? It is not blank or 0 or space! If the

variable is declared with int data type, the content or the R-value will be any integer

within the allowed range. But this number cannot be predicted or will not always be the

same. So we call it garbage value. When we store a value into the variable, the existing

content will be replaced by the new one. The value can be stored in the variable either

at the time of compilation or execution. Supplying value to a variable at the time of its

declaration is called variable initialisation. This value will be stored in the respective

memory location during compile-time. The assignment operator (=) is used for this. It

can be done in two ways as given below:

data_type variable = value;

OR data_type variable(value);

The statements: int xyz=120; and int xyz(120); are examples of variable

initialisation statements. Both of these statements declare an integer variable xyz and

store the value 120 in it as shown in Figure 6.1.

More examples are:

float val=0.12, b=5.234;

char k='A';

A variable can also be initialised during the execution of the program and is known as

dynamic initialisation. This is done by assigning an expression to a variable as shown in

the following statements:

float product = x * y;

float interest= p*n*r/100.0;

Fig 6.1: Variable initialisation

147

6. Introduction to Programming

In the first statement, the variable product is initialised with the product of the values

stored in x and y at runtime. In the second case, the expression p*n*r/100.0 is

evaluated and the value returned by it will be stored in the variable interest at

runtime.

Note that during dynamic initialisation, the variables included in the expression at the

right of assignment operator should have valid data, otherwise it will produce unexpected

results.

6.4 const - The access modifier

It is a good practice to use symbolic constants rather than using numeric constants

directly. For example, we can use symbolic name like pi instead of using

22.0/7.0 or 3.14. The keyword const is used to create such symbolic constants

whose value can never be changed during execution.

Consider the statement: float pi=3.14;

The floating point variable pi is initialised with the value 3.14. The content of pi can

be changed during the execution of the program. But if we modify the declaration as:

const float pi=3.14;

the value of pi remains constant (unaltered) throughout the execution of the program.

The read/write accessibility of the variable is modified as read only. Thus, the const

acts as an access modifier.

During software development, larger programs are developed using

collaborative effort. Several people may work together on different

portions of the same program. They may share the same variable. In

these situations, there may be occasions where one may modify the

content of the variable which will adversely affect other person's coding. In these

situations we have to keep the content of variables unaffected by the activity of

others. This can be done by using const.

6.5 Type modifiers

Have you ever seen travel bags that can alter its size/volume to include extra bit of

luggage? Usually we don't use that extra space. But the zipper attached with the bag

helps us to alter its volume either by increasing it or by decreasing. In C++ too, we

need data types that can accommodate data of slightly bigger/smaller size. C++ provides

data type modifiers which help us to alter the size, range or precision. Modifiers

precede the data type name in the variable declaration. It alters the range of values

148

The values listed above are only sample values to give you a general

idea of how the types differ. The values for any of these entries may

be different on your system.

permitted to a data type by altering the memory size and/or sign of values. Important

modifiers are signed, unsigned, long and short.

The exact sizes of these data types depend on the compiler and computer you are

using. It is guaranteed that:

• a double is at least as big as a float.

• a long double is at least as big as a double.

Each type and their modifiers are listed in Table 6.1 (based on GCC compiler) with

their features.

char

short int

(short)

int

long int

(long)

float

double

long

double

Table 6.1 : Data type and type modifiers

Character

Short Integer

Integer

Long integer

Floating point number

Double precision

floating point number

Long double precision

floating point number

1 byte

2 bytes

4 bytes

4 bytes

4 bytes

8 bytes

10 bytes

signed: -128 to 127

unsigned: 0 to 255

signed: -32768 to 32767

unsigned: 0 to 65535

signed: -2147483648 to 2147483647

unsigned: 0 to 4294967295

signed: -2147483648 to 2147483647

unsigned: 0 to 4294967295

-3.4×10+/-38 to +3.4 × 10+/-38 with

approximately 7 significant digits

-1.7 × 10+/-308 to +1.7 × 10+/-308 with

approximately 15 significant digits

-3.4 × 10+/-4932 to +3.4 ×10+/-4932 With

approximately 19 significant digits

Name Description Size Range

6.6 More Operators

We discussed the operators in C++ for the commonly used operations. There are

some special operators in C++ which make programs more condensed. They combine

two operations together. We will discuss a few of them which combine assignment and

149

6. Introduction to Programming

arithmetic operations into a single operator. Arithmetic assignment, increment and

decrement operators are some examples.

6.6.1 Arithmetic assignment operators

A simple arithmetic statement can be expressed in a more condensed form using arithmetic

assignment operators. For example, a=a+10 can be represented as a+=10. Here +=

is an arithmetic assignment operator. This

method is applicable to all arithmetic

operators and they are shown in Table 6.2.

The arithmetic assignment operators in C++

are +=, -=, *=, /=, %=. These are also

known as C++ short-hands. These are all

binary operators and the first operand should

be a variable. The use of these operators

makes the two operations (arithmetic and

assignment) faster than the usual method.

6.6.2 Increment (++) and Decrement (--) operators

Increment and decrement operators are two special operators in C++. These are unary

operators and the operand should be a variable. These operators help keeping the

source code compact.

Increment operator (++)

This operator is used for incrementing the content of an integer variable by one. This

can be written in two ways ++x (pre increment) and x++ (post increment). Both are

equivalent to x=x+1 as well as x+=1.

Decrement operator (--)

As a counterpart of increment operator, there is a decrement operator which decrements

the content of an integer variable by one. This operator is also used in two ways --x

(pre decrement) and x-- (post decrement). These are equivalent to x=x-1 and

x-=1.

The two usages of these operators are called prefix form and postfix form of increment/

decrement operation. Both the forms make the same effect on the operand variable,

but the mode of operation will be different when these are used with other operators.

Prefix form of increment/decrement operators

In the prefix form, the operator is placed before the operand and the increment/decrement

operation is carried out first. The incremented/decremented value is used for the other

operation. So, this method is often called change, then use method.

Table 6.2: C++ short hands

Arithmetic Equivalent
assigment arithmetic
operation operation

x += 10 x = x + 10

x -= 10 x = x - 10

x *= 10 x = x * 10

x /= 10 x = x / 10

x %= 10 x = x % 10

150

Consider the variables a, b, c and d with values a=10, b=5. If an operation specified

as c=++a, the value of a will be 11 and that of c will also be 11. Here the value of a is

incremented by 1 at first and then the changed value of a is assigned to c. That is why

both the variables get the same value. Similarly, after the execution of d=--b the value

of d and b will be 4.

Postfix form of increment/decrement operators

When increment/decrement operation performed in postfix form, the operator is placed

after the operand. The current value of the variable is used for the remaining operation

and after that the increment/decrement operation is carried out. So, this method is often

called use, then change method.

Consider the same variables used above with the same initial values. After the operation

performed with c=a++, the value of a will be 11, but that of c will be 10. Here the

value of a is assigned to c at first and then a is incremented by 1. That is, before

changing the value of a it is used to assign to c. Similarly, after the execution of

d=b-- the value of d will be 5 but that of b will be 4.

6.6.3 Precedence of operators

Let us consider the case where different operators are used with the required operands.

We should know in which order the operations will be carried out. C++ gives priority

to the operators for execution. During execution, a pair of parentheses is given the first

priority. If the expression is not parenthesised, it is evaluated according to some

precedence order. The order is given in Table 6.3. In an expression, if the operations of

same priority level occur, the precedence of execution will be from left to right in most

of the cases.

Consider the variables with the values: a=3, b=5, c=4, d=2, x

After the operations specified in the following:

 x = a + b * c - d;

the value in x will be 21. Here * (multiplication) has higher priority than + (addition)

and - (subtraction). Therefore the variables b and c are multiplied, then that result is

added to a. From that result, d is subtracted to get the final result.

It is important to note that the operator priority can be changed in an expression as per

the need of the programmer by using parentheses ().

For example, if a=5, b=4, c=3, d=2 then the result of a+b-c*d will be 3.

Suppose the programmer wants to perform subtraction first, then addition and

multiplication, you need to use proper parentheses as (a+(b-c))*d. Now the output

will be 12. For changing operator priority, brackets [] and braces {} cannot be used.

151

6. Introduction to Programming

6.7 Type conversion

We discussed in the last chapter that arithmetic operations are represented by arithmetic

expressions, which may be either integer expression or real expressions. In both cases,

the operands involved in the arithmetic operation are of the same data type. But there

are situations where different types of numeric data may be involved. For example in

C++, the integer expression 5 /2 gives 2 and the real expression 5.0/2.0 gives 2.5. But

what will the result of 5/2.0 or 5.0/2 be? Conversion techniques are applied in such

situations. The data type of one operand will be converted to another. It is called type

conversion and can be done in two ways: implicitly and explicitly.

6.7.1 Implicit type conversion (Type promotion)

Implicit type conversion is performed by C++ compiler internally. In expressions where

different types of data are involved, C++ converts the lower sized operands to the data

type of highest sized operand. Since the conversion is always from lower type to higher,

it is also known as type promotion. Data types in the decreasing order of size are as

follows: long double, double, float, unsigned long, long int, unsigned

int, int and short int. The type of the result will also be the type of the highest

sized operand.

Priority Operations

1 () parentheses

2 ++, --, ! , Unary+ , Unary –, sizeof

3 * (multiplication), / (division), % (Modulus)

4 + (addition), - (subtraction)

5 < (less than), <= (less than or equal to), > (greater than), >= (greater

than or equal to)

6 == (equal to), != (not equal to)

7 && (logical AND)

8 || (logical OR)

9 ? : (Conditional expression)

10 = (Assignment operator), *=, /=, %=, +=, -= (arithmetic assignment

operators)

11 , (Comma)

Table 6.3: Precedence of operators

152

For example, consider the expression 5 / 2 * 3 + 2.5 which gives the result

8.5. The evaluation steps are as follows:

Step 1: 5 / 2 à 2 (Integer division)

Step 2: 2 * 3 à 6 (Integer multiplication)

Step 3: 6 + 2.5 à 8.5 (Floating point addition, 6 is converted into 6.0)

6.7.2 Explicit type conversion (Type casting)

Unlike implicit type conversion, sometimes the programmer may decide the data type

of the result of evaluation. This is done by the programmer by specifying the data type

within parentheses to the left of the operand. Since the programmer explicitly casts a

data to the desired type, it is also known as explicit type conversion or type casting.

Usually, type casting is applied on the variables in the expressions. The data type

compatibility is to be seriously considered in assignment statements where expressions

are involved.

Type compatibility in assignment statement

During the execution of an assignment statement, if the data type of the RHS expression

is different from that of the LHS variable, there are two possibilities.

• The size of the data type of the variable at LHS is higher than that of the variable

or expression at RHS. In this case data type of the value at RHS is promoted

(type promotion) to that of the variable at LHS. Consider the following code

snippet:

int a=5, b=2;

float p, q;

p = b;

q = a / p;

Here the data type of b is promoted to float and 2.0 is stored in p. So when the

expression a/p is evaluated, the result will be 2.5 due to the type promotion of a. So,

q will be assigned with 2.5.

• The second possibility is that the size of the data type of LHS variable is smaller

than the size of RHS value. In this case, the higher order bits of the result will be

truncated to fit in the variable location of LHS. The following code illustrates this.

float a=2.6;

int p, q;

p = a;

q = a * 4;

153

6. Introduction to Programming

Multiline comment

Indentation

Program 6.1: To display a message

Single line comment

Here the value of p will be 2 and that of q will be 10. The expression a*4 is evaluated

to 10.4, but q being int type it will hold only 10.

Programmer can apply the explicit conversion technique to get the desired results when

there are mismatches in the data types of operands. Consider the following code segment.

int p=5, q=2;

float x, y;

x = p/q;

y = (x+p)/q;

After executing the above code, the value of x will be 2.0 and that of y will be 3.5. The

expression p/q being an integer expression gives 2 as the result and is stored in x as

floating point value. In the last statement, the pair of parentheses gives priority to x+p

and the result will be 7.0 due to the type promotion of p. Then the result 7.0 will be the

first operand for the division operation and hence the result will be 3.5 since q is converted

into float. If we have to get the floating point result from p/q to store in x, the

statement should be modified as x=(float)p/q; or x=p/(float)q; by applying

type casting.

Program Gallery

Let us write programs to solve some problems following the guidelines. Program 6.1

displays a message.

/* This is a program which displays the message

 smoking is injurious to health

 on the monitor */

#include <iostream> // To use the cout object

using namespace std; // To access the cout object

int main() //program begins here

{ //The following statement displays the message

cout << "Smoking is injurious to health";

return 0;

} //end of the program

On executing Program 6.1, the output will be as follows:

Smoking is injurious to health

More illustrations on the usage of indentation can be seen in the programs given in

Chapter 7. Program 6.2 accepts two numbers from user, finds their sum and displays

the result. It uses all types of statements that we discussed in Chapter 5.

154

Program 6.3: To find the average of three CE scores

Let us do

Run Program 6.2 with some other inputs like 5.2 and 2.7 and

check whether you get correct answer. If not, discuss with your

friends to identify the problem and find solution.

Program 6.2: To find the sum of two numbers

#include <iostream>

using namespace std;

int main()

{ //Program begins

/* Two variables are declared to read user inputs

and the variable sum is declared to store the result */

int num1, num2, sum;

cout<<"Enter two numbers: ";//Used as prompt for input

cin>>num1>>num2; //Cascading facility to get two numbers

sum=num1+num2; //Assignment statement to store the sum

/* The result is displayed with proper message.

 Cascading of output operator is utilized */

cout<<"Sum of the entered numbers = "<<sum;

return 0;

}

A sample output of Program 6.2 is given below:

Enter two numbers: 5 7

Sum of the entered numbers = 12

User inputs separated by spaces

Let's consider another problem. A student is awarded the scores in three Continuous

Evaluation activities. The maximum score of an activity is 20. Find the average score of

the student.

#include <iostream>

using namespace std;

int main()

{

int score_1, score_2, score_3;

float avg;//Average of 3 numbers may be a floating point

cout << "Enter the three scores: ";

cin >> score_1 >> score_2 >> score_3;

155

6. Introduction to Programming

Program 6.4: To find the area and perimeter of a circle

Escape sequence

'\n' prints

a new line after

displaying

the value of area

avg = (score_1 + score_2 + score_3) / 3.0;

/* The result of addition will be an integer value.

 If 3 is written instead of 3.0, integer division

 will take place and result will not be correct */

cout << "Average CE score is: " << avg;

return 0;

}

Program 6.3 gives the following output for the scores given below:

Enter the three scores: 17 19 20

Average CE score is: 18.666666

The assignment statement to find the average value uses an expression to the right of

assignment operator (=). This expression has two + operators and one / operator.

The precedence of / over + is changed by using parentheses for addition. The operands

for the addition operators are all int type data and hence the result will be an integer.

When this integer result is divided by 3, the output will again be an integer. If it was so,

the output of Program 6.3 would have been 18, which is not accurate. Hence floating

point constant 3.0 is used as the second operand for / operator. It makes the integer

numerator float by type promotion.

 Suppose the radius of a circle is given and you have to calculate its area and perimeter.

As you know area of a circle is calculated using the formula π r2 and perimeter by 2πr,

where π = 3.14. Program 6.4 solves this problem.

#include <iostream>

using namespace std;

int main()

{

const float PI = 22.0/7;//Use of const access modifier

float radius, area, perimeter;

cout<<"Enter the radius of a circle: ";

cin>>radius;

area = PI * radius * radius;

perimeter = 2 * PI * radius;

cout<<"Area of the circle = "<<area<< "\n";

cout<<"Perimeter of the circle = "<<perimeter;

return 0;

}

156

A sample output of Program 6.4 is shown below:

Enter the radius of a circle: 2.5

Area of the circle = 19.642857

Perimeter of the circle = 15.714285

The last two output statements of Program 6.4 display both the results in separate lines.

The escape sequence character '\n' brings the cursor to the new line before the last

output statement gets executed.

Let's develop yet another program to find simple interest. As you know, principal amount,

rate of interest and period are to be input to get the result.

#include <iostream>

using namespace std;

int main()

{

float p_Amount, n_Year, i_Rate, int_Amount;

cout<<"Enter the principal amount in Rupees: ";

cin>>p_Amount;

cout<<"Enter the number of years of deposit: ";

cin>>n_Year;

cout<<"Enter the rate of interest in percentage: ";

cin>>i_Rate;

int_Amount = p_Amount * n_Year * i_Rate /100;

cout << "Simple interest for the principal amount "

<< p_Amount

<< " Rupees for a period of " << n_Year

<< " years at the rate of interest " << i_rate

<< " is " << int_Amount << " Rupees";

return 0;

}

A sample output of Program 6.5 is given below:

Enter the principal amount in Rupees: 100

Enter the number of years of deposit: 2

Enter the rate of interest in percentage: 10

Simple interest for the principal amount 100 Rupees for a

period of 2 years at the rate of interest 10 is 20 Rupees

Program 6.5: To find the simple interest

157

6. Introduction to Programming

Program 6.7: To find the ASCII code of a character

The last statement in Program 6.5 is an output statement and it spans over five lines. It

is a single statement. Note that there is no semicolon at the end of each line. On execution

the result may be displayed in two lines depending on the size and resolution of the

monitor of your computer.

Program 6.6 solves a conversion problem. The temperature in degree Celsius will be

the input and the output will be its equivalent in Fahrenheit.

#include <iostream>

using namespace std;

int main()

{

float celsius, fahrenheit;

cout<<"Enter the Temperature in Celsius: ";

cin>>celsius;

fahrenheit=1.8*celsius+32;

cout<<celsius<<" Degree Celsius = "

 <<fahrenheit<<" Degree Fahrenheit";

return 0;

}

Program 6.6 gives a sample output as follows:

Enter the Temperature in Celsius: 37

37 Degree Celsius = 98.599998 Degree Fahrenheit

We know that each character literal in C++ has a unique value called its ASCII code.

These codes are integers. Let us write a program to find the ASCII code of a given

character.

#include <iostream>

using namespace std;

int main()

{

char ch;

int asc;

cout << "Enter the character: ";

cin >> ch;

asc = ch;

cout << "ASCII of "<<ch<<" = " << asc;

return 0;

}

Program 6.6: To convert temperature from Celsius to Fahrenheit

158

 Let us sum up

C++ program has a typical structure and it must be followed while writing programs.

Stylistic guidelines shall be followed to make the program attractive and communicative

among humans. While declaring variables, they can be initialised with user supplied

values. The value thus assigned cannot be changed if we use const access modifier

in the variable initialization statement. Type modifiers help handling a higher range of

data and are used with data types to declare variables. There are some special

operators in C++ for performing arithmetic and assignment operations together.

Type conversion methods are available in C++ and are used to get desired results

from arithmetic expressions.

 Learning outcomes

After the completion of this chapter the learner will be able to

• list and choose appropriate data type modifiers.

• experiment with various operators.

• apply the various I/O operators.

• identify the structure of a simple C++ program.

• identify the need for stylistic guidelines while writing a program.

• write simple programs using C++ IDE.

1. Write a program that asks the user to enter the weight in grams, and then display

the equivalent in Kilogram.

2. Write a program to generate the following table

2013 100%

2012 99.9%

2011 95.5%

2010 90.81%

2009 85%

Lab activity

A sample output of Program 6.7 is given below:

Enter the character A

ASCII of A = 65

159

6. Introduction to Programming

Use a single cout statement for output. (Hint: Make use of \n and \t)

3. Write a short program that asks for your height in Meter and Centimeter and

converts it to Feet and inches. (1 foot = 12 inches, 1 inch = 2.54 cm).

4. Write a program to find area of a triangle.

5. Write a program to compute simple interest and compound interest.

6. Write a program to : (i) print ASCII code for a given digit. (ii) print ASCII code

for backspace. (Hint : Store escape sequence for backspace in an integer vari-

able).

7. Write a program to accept a time in seconds and convert into hrs: mins: secs

format. For example, if 3700 seconds is the input, the output should be 1hr: 1 min:

40 secs.

Very short answer type

1. What is dynamic initialisation of variables?

2. What is type promotion?

3. What do you mean by type casting? What is type cast operator?

Short answer type

1. What type of variable declaration is used in the following program code ?

{ int area, length = 10, width = 12, perimeter;

 area = length * width;

 perimeter = 2*(length + width);

}

2. Modify the above program code to have dynamic initialisation for variables area

and perimeter.

3. Explain type modifiers in C+ +.

4. Why are so many data types provided in C++?

5. What is the role of the keyword 'const'?

6. Explain pre increment and post increment operations.

7. Explain the methods of type conversions.

8. If the file iostream.h is not included in a program, what happens?

9. What would happen if main() is not present in a program?

Sample questions

160

10. Identify the errors in the following code segments

i. int main () { cout << "Enter two numbers"

cin >> num >> auto

float area = Length * breadth ; }

ii. #include <iostream>

using namespace;

int Main()

{ int a, b

 cin <<a >>b

 max = a % b

 cout > max

}

11. Comments are a useful and an easy way to enhance readability and understand-

ability of a program. Justify this statement with examples.

Long answer type

1. Explain different types of expressions in C++ and different methods of type

conversions in detail.

2. Write the working of an assignment operator? Explain all arithmetic assignment

operators with the help of examples.

