
161

7. Control Statements

Key concepts
In the previous chapters we discussed some

executable statements of C++ to perform

operations such as input, output and assignment.

We know how to write simple programs. The

execution of these programs is sequential in

nature. That is the statements constituting the

program are executed one by one. In this

chapter, we discuss C++ statements used for

altering the default flow of execution. As we

discussed in Chapter 3, selection, skipping or

repeated execution of some statements may be

required for solving problems. Usually this

decision will be based on some condition(s).

C++ provides statements to facilitate this

requirement with the help of control statements.

These statements are used for altering the

normal flow of program execution. Control

statements are classified into two: (i) decision

making/selection statements and (ii) iteration

statements. Let us discuss these statements, their

syntax and mode of execution.

7.1 Decision making
statements

At times it so happens that the computer may

not execute all statements while solving

problems. Some statements may be executed

in a situation, while they may not be executed

• Decision making statements

o if statement

o if … else statement

o Nested if

o else if ladder

o switch statement

o Conditional operator

• Iteration statements

o while statement

o for statement

o do... while statement

7

162

in other situations. The computer has to take the required decision in this respect. For

this, we have to provide appropriate conditions which will be evaluated by the computer.

It will then take a decision on the basis of the result. The decision will be in the form of

selecting a particular statement for execution or skipping some statements from being

executed. The statements provided by C++ for the selected execution are called decision

making statements or selection statements. if and switch are the two types of

selection statements in C++.

7.1.1 if statement

The if statement is used to select a set of statements for execution based on a condition.

In C++, conditions, otherwise known as test expressions are provided by relational or

logical expressions. The syntax (general form) of if statement is as follows:

Here the test expression represents a condition which is either a relational

expression or logical expression. If the test expression evaluates to True (non-zero

value), a statement or a block of statements associated with if is executed. Otherwise,

the control moves to the statement following

the if construct. Figure 7.1 shows the

execution mode of if statement. While using

if, certain points are to be remembered.

• The test expression is always enclosed in

parentheses.

• The expression may be a simple expres-

sion constituted by relational expression

or a compound expression constituted

by logical expression.

• The statement block may contain a single

statement or multiple statements. If there

is a single statement, then it is not manda-

tory to enclose it in curly braces {}. If

there are multiple statements, then they

must be enclosed in curly braces.
Fig. 7.1 : Working of if statement

if (test expression)

{

statement block;

}

Body of if statement that consists of the

statement(s) to be executed when the

condition is True

False

163

7. Control Statements

Program 7.1 accepts the score of a student and displays the text “You have passed”

only if he/she has passed. (assume that 18 is the minimum for pass).

The following is a sample output of program 7.1:

Enter your score : 25

You have passed

In Program 7.1, the score of a student is entered and stored in the variable score. The

test expression compares the value of score with 18. The body of if will be executed

only if the test expression evaluates to True. That means, when the score is greater than

or equal to18, the output “You have Passed” will be displayed on the screen.

Otherwise, there will be no output.

Note that, the statement block associated with if is written after a tab space. We call

it indentation. This is a style of coding which enhances the readability of the source

code. Indentation helps the debugging process greatly. But it has no impact on the

execution of the programme.

Consider the following C++ program segement. It checks whether a given character is

an alphabet or a digit.

#include <iostream>

using namespace std;

int main()

{

int score ;

cout << "Enter your score: ";

cin >> score;

if (score >= 18)

cout << "You have Passed";

return 0;

}

Body of if

Program 7.1: To display ‘You have Passed’ if score is 18 or more

Logical expression is evaluated

Only a single

statement. No

need of braces { }

char ch;

cin >> ch;

if (ch >= ‘a’ && ch <= ‘z’)

cout <<"You entered an alphabet";

if (ch >= ‘0’ && ch <= ‘9’)

{

cout<< "\nYou entered a digit";

cout<< "\nIt is a decimal number";

}

More than

one statement;

Must be

enclosed in

braces { }

164

Fig 7.2: Flowchart of if - else

if (test expression)

{

statement block 1;

}

else

{

statement block 2;

}

7.1.2 if...else statement

Consider the if statement in Program 7.1:

if (score >= 18)

 cout << "You have Passed";

Here, the output is obtained only if the score is greater than or equal to 18. What will

happen if the score entered is less than 18? It is clear that there will be no output.

Actually we don't have the option of selecting another set of statements if the test

expression evaluates to False. If we want to execute some actions when the condition

becomes False, we introduce another form of if statement, if..else. The syntax is:

Here, if the test

expression evaluates to

True, only the statement

block 1 is executed. If

the test expression

evaluates to False,

statement block 2

is executed. The flowchart

shown in Figure 7.2

explains the execution of

if…else statement.

The following code segment illustrates the working of if...else statement.

if (score >= 18)

 cout << "Passed";

else

 cout << "Failed";

This statement is executed only when

score is 18 or more (Test expression

returns True)

This statement is executed only when

score is less than 18 (Test expression

returns False)

165

7. Control Statements

Let us write a program to input the heights of two students and find the taller.

When program 7.2 is executed, one of the output statements will be displayed. The

selection depends upon the relational expression ht1>ht2. The following are sample

outputs:

Output 1:

Enter heights of the two students: 170 165

Student with height 170 is taller

Output 2:

Enter heights of the two students: 160 171

Student with height 171 is taller

In the first output, we input 170 for ht1 and 165 for ht2. So, the test expression

(ht1>ht2) is evaluated to True and hence the statement block of if is selected and

executed. In the second output, we input 160 for ht1 and 171 for ht2. The test

expression, (ht1>ht2) is evaluated and found False. Hence the statement block of

else is selected and executed.

In if...else statement, either the code associated with if (statement block1) or

the code associated with else (statement block 2) is executed.

Let us see another program that uses an arithmetic expression as one of the operands in

the test expression. Program 7.3 uses this concept to check whether an input number is

even or odd.

Program 7.2: To find the taller student by comparing their heights

#include <iostream>

using namespace std;

int main()

{

int ht1, ht2;

cout << "Enter heights of the two students: ";

cin >> ht1 >> ht2;

if (ht1 > ht2) //decision making based on condition

cout << "Student with height "<<ht1<<" is taller";

else

cout << "Student with height "<<ht2<<" is taller";

return 0:

}

166

1. Write a program to check whether a given number is a non-

zero integer number and is positive or negative.

2. Write a program to input enter a single character for sex and

print out the gender.

If the input character is ‘M’ display “Male". If the input is ‘F’

display “Female”

3. Write a program to input your age and check whether you are

eligible to cast vote (the eligibility is 18 years and above).

Let us do

Some sample outputs of Program 7.3 are shown below:

Output 1:

Enter the number: 7

The given number is Odd

Output 2:

Enter the number: 10

The given number is Even

In this program, the expression (num%2) finds the remainder when num is divided by

2 and compares it with the value 0. If they are equal, the if block is executed, otherwise

the else block is executed.

7.1.3 Nested if

In some situations there may arise the need to take a decision within if block. When

we write an if statement inside another if block, it is called nesting. Nested means

one inside another.

#include <iostream>

using namespace std;

int main()

{

int num;

cout<<"\nEnter the number: ";

cin >> num;

if (num%2 == 0)

cout << "The given number is Even";

else

cout << "The given number is Odd";

return 0;

}

Program 7.3: To check whether a given number is even or odd

167

7. Control Statements

Consider the following program segment:

In this code fragment, if the value of score is greater than or equal to 60, the flow of

control enters the statement block of outer if. Then the test expression of the inner if

is evaluated (i.e. whether the value of age is greater than or equal to18). If it is evaluated

to True, the code displays the message, "You are selected for the

course!". Then the program continues to execute the statement following the outer

if statement. An if statement, inside another if statement is termed as a nested if

statement. The following is an expanded form of nested if.

outer ifif (score >= 60)

{

if(age >= 18)

cout<<"You are selected for the course!";

}

inner if

The important point to remember about nested if is that an else statement always

refers to the nearest if statement within the same block. Let us discuss this case with

an example. Consider the following program segment:

cout<<"Enter your scores in Computer Science exam: ";

cin>>score;

if (score >= 18)

 cout<<"You have passed";

 if(score >= 54)

 cout<<" with A+ grade !";

else

 cout<<"\nYou have failed";

if (test expression 1)

{

if (test expression 2)

statement 1;

else

statement 2;

}

else

{

body of else ;

}

It will be executed if test

expression 1 is False. The test

expression 2 is not evaluated.

It will be executed if both the test

expressions are True.

It will be executed if test

expression 1 is True, but test

expression 2 is False.

168

#include <iostream>

using namespace std;

int main()

{

int x, y, z;

cout << "Enter three different numbers: ";

cin >> x >> y >> z ;

Program 7.4: To find the largest among three numbers

If we input the value 45 for score, the output will be as follows:

You have passed

You have failed

We know that this is logically not correct. Though the indentation of the code is proper,

that doesn't matter in execution. The second if statement will not be considered as

nested if, rather it is counted as an independent if with an else block. So, when

the first if statement is executed, the if block is selected for execution since the test

expression is evaluated to True. It causes the first line in the output. After that, while

considering the second if statement, the test expression is evaluated to False and

hence the second line in the output is obtained. So to get the correct output, the code

should be modified as follows:

cout<<"Enter your scores in Computer Science exam: ";

cin>>score;

if (score >= 18)

{

cout<<"You have passed";

if(score >= 54)

cout<<" with A+ grade !";

}

else

cout<<"\nYou have failed";

If we input the same value 45 as in the case of previous example, the output will be as

follows:

You have passed

Program 7.4 uses nested if to find the largest among three given numbers. In this

program, if statement is used in both the if block and else block.

Nesting is enforced by putting a

pair of braces

It is now associated with the outer if

169

7. Control Statements

A sample output of program 7.4 is given below:

Enter three different numbers: 6 2 7

The largest number is: 7

As per the input given above, the test expression (x>y) in the outer if evaluated to

True and hence the control enters the inner if. Here the test expression (x>z) is

evaluated to False and so its else block is executed. Thus the value of z is displayed

as the output.

Check yourself

1. Write a program to input an integer and check whether it is positive,

negative or zero.

2. Write a program to input three numbers and print the smallest one.

7.1.4 The else if ladder

There are situations where an if statement is used within an else block. It is used in

programs when multiple branching is required. Different conditions will be given and

each condition will decide which statement is to be selected for execution. A common

programming construct based on if statement is the else if ladder, also referred to

as the else if staircase because of its appearance. It is also known as

if...else if statement.

if (x > y)

{

if (x > z)

cout << "The largest number is: " << x;

else

cout << "The largest number is: " << z;

}

else

{

if (y > z)

cout << "The largest number is: " << y;

else

cout << "The largest number is: " << z;

}

return 0;

}

170

The general form of else if ladder is:

if (test expression 1)

statement block 1;

else if (test expression 2)

statement block 2;

else if (test expression 3)

statement block 3;

...............

else

statement block n;

At first, the test expression 1 is evaluated and if it is True, the statement

block 1 is executed and the control comes out of the ladder. That means, the rest of

the ladder is bypassed. If test expression 1 evaluates to False, then the test

expression 2 is evaluated and so on. If any one of the test expressions evaluates to

True, the corresponding statement block is executed and control comes out of the

ladder. If all the test expressions are evaluated to False, the statement block n

after the final else is executed. Observe the indentation provided in the syntax and

follow this style to use else if ladder.

Let us illustrate the working of the else if ladder by writing a program to find the

grade of a student in a subject when the score out of 100 is given. The grade is found

out by the criteria given in the following table:

80 or more

From 60 To 79

From 40 To 59

From 30 To 39

Below 30

A

B

C

D

E

Score Grade

#include <iostream>

using namespace std;

int main()

{

int score;

cout << "Enter the score: ";

Program 7.5: To find the grade of a student for a given score

171

7. Control Statements

The following are the sample outputs of program 7.5:

Output 1:

Enter the score: 75

B Grade

Output 2:

Enter the score: 25

E Grade

In program 7.5, initially the test expression score>=80 is evaluated. Since the input is

75 in Output 1, the test expression is evaluated to False, and the next test expression

score>=60 is evaluated. Here it is True, and hence "B Grade" is displayed and

the remaining part of the else if ladder is bypassed. But in the case of Output 2, all

the test expressions are evaluated to False, and so the final else block is executed

which makes "E Grade" as the output.

Let us write a program to check whether the given year is a leap year or not. The input

value should be checked to know whether it is century year (year divisible by 100). If

it is a century year, it becomes a leap year only if it is divisible by 400 also. If the input

value is not a century year, then we have to check whether it is divisible by 4. If it is

divisible, the given year is a leap year, otherwise it is not a leap year.

cin >> score;

if (score >= 80)

cout<<"A Grade";

else if (score >= 60)

cout<<"B Grade ";

else if (score >= 40)

cout<<"C grade";

else if (score >= 30)

cout<<"D grade";

else

cout<<"E Grade";

}

Program 7.6: To check whether the given year is leap year or not

#include <iostream>

using namespace std;

int main()

{

int year ;

cout << "Enter year (in 4-digits): ";

cin >> year;

172

Let us see some sample outputs of Program 7.6:

Output 1:

Enter year (in 4-digits): 2000

Leap Year

Output 2:

Enter year (in 4-digits): 2014

Not a leap Year

Output 3:

Enter year (in 4-digits): 2100

Not a leap Year

Output 4:

Enter year (in 4-digits): 2004

Leap Year

We write one more program to illustrate the use of else if ladder. Program 7.7

allows to input a number between 1 and 7 to denote the day of a week and displays the

name of the corresponding day. The input 1 will give you "Sunday" as output, 2 will give

"Monday" and so on. If the input is outside the range 1 to 7, the output will be "Wrong

input".

if (year % 100 == 0)// Checks for century year

{

if (year % 400 == 0)

cout << "Leap Year\n" ;

else

cout<< "Not a leap year\n" ;

}

else if (year % 4 == 0)

cout << "Leap Year\n" ;

else

cout<< "Not a leap year\n" ;

}

A century year is leap year

only if it is divisible by 400

Non - century year is leap

year only if it is divisible by 4

#include <iostream>

using namespace std;

int main()

{

int day;

cout << "Enter day number (1-7): ";

cin >> day;

if (day == 1)

cout<<"Sunday" ;

else if (day == 2)

Program 7.7: To display the name of the day for a given day number

173

7. Control Statements

cout<<"Monday" ;

else if (day == 3)

cout<<"Tuesday" ;

else if (day == 4)

cout<<"Wednesday" ;

else if (day == 5)

cout<<"Thursday" ;

else if (day == 6)

cout<<"Friday" ;

else if (day == 7)

cout<<"Saturday" ;

else

cout<<"Wrong input" ;

return 0;

}

The following are some sample outputs of Program 7.7:

Output 1:

Enter day number (1-7): 5

Thursday

Output 2:

Enter day number (1-7): 9

Wrong input

7.1.5 switch statement

We have seen the concept of multiple branching with the help of else if ladder.

Some of these programs can be written using another construct of C++ known as

switch statement. This selection statement successively tests the value of a variable

or an expression against a list of integer or character constants.

Check yourself

1. Write a program to input an integer number and check whether it is

positive, negative or zero using if…else if statement.

2. Write a program to input a character (a, b, c or d) and print as follows:

a - "abacus", b - "boolean", c - "computer" and d - "debugging"

3. Write a program to input a character and print whether it is an alphabet,

digit or any other character.

174

The syntax of switch statement is given below:

switch (expression)

{

case constant_1 : statement block 1;

break;

case constant_2 : statement block 2;

break;

case constant_3 : statement block 3;

break;

:

:

case constant_n-1 : statement block n-1;

break;

default : statement block n;

}

In the syntax switch, case, break and default are keywords. The expression

is evaluated to get an integer or character constant and it is matched against the constants

specified in the case statements. When a match is found, the statement block associated

with that case is executed until the break statement or the end of switch statement

is reached. If no match is found, the statements in the default block get executed.

The default statement is optional and if it is missing, no action takes place when all

matches fail. The break statement, used inside switch, is one of the jump statements

in C++. When a break statement is encountered, the program control goes to the

statements following the switch statement.

Program 7.7 can be written using switch statement. It enhances the readability and

effectiveness of the code. Observe the modification in Program 7.8.

#include <iostream>

using namespace std;

int main()

{ int day;

cout << "Enter a number between 1 and 7: ";

cin >> day;

switch (day)

{

case 1: cout << "Sunday";

break;

case 2: cout << "Monday";

break;

case 3: cout << "Tuesday";

break;

Program 7.8: To display the day of a week using switch statement

175

7. Control Statements

The output of Program 7.8 will be the same as in Program 7.7. The following are some

samples:

Output 1:

Enter a number between 1 and 7: 5

Thursday

Output 2:

Enter a number between 1 and 7: 8

Wrong input

In Program 7.8, value of the variable day is compared against the constants specified

in the case statements. When a match is found, the output statement associated with

that case is executed. If we input the value 5 for the variable day, then the match

occurs for the fifth case statement and the statement cout << "Thursday"; is

executed. If the input is 8 then no match occurs and hence the default block is

executed.

Can you predict the output of Program 7.8, if all the break statements are omitted?

The value returned by day is compared with the case constants. When the first match

is found, the associated statements will be executed and the following statements will

also be executed irrespective of the remaining constants. There are situations where we

omit the break statement purposefully. If the statements associated with all the case

in a switch are the same we only need to write the statement against the last case.

Program 7.9 illustrates this concept.

case 4: cout << "Wednesday";

break;

case 5: cout << "Thursday";

break;

case 6: cout << "Friday";

break;

case 7: cout << "Saturday";

break;

default: cout << "Wrong input";

}

}

#include <iostream>

using namespace std;

int main()

{

char ch;

cout<<"Enter the character to check: ";

cin>>ch;

Program 7.9: To check whether the given character is a vowel or not

176

Some of the outputs given by Program 7.9 are shown below:

Output 1:

Enter the character to check: E

Given character is a vowel

Output 2:

Enter the character to check: k

Given character is not a vowel

Suitability and requirements for using switch

Though switch statement and else if ladder cause multiple branching, they do

not work in the same fashion. In C++ all switch statements can be replaced by

else if ladders, but all else if ladders cannot be substituted by switch. The

following are the requirements to implement a multi branching using switch statement:

• Conditions involve only equality checking. In other cases, it should be converted

into equality expression.

• The first operand in all the equality expressions should be the same variable or

expression.

• The second operand in these expressions should be integer or character

constants.

Among the programs we discussed so far in this chapter, only the branching in Programs

7.3 and 7.7 can be replaced by switch. In Program 7.5, we can use switch if we

modify the test expressions as score/10==10, score/10==9, score/10==8,

and so on.

switch(ch)

{

case 'A':

case 'a':

case 'E':

case 'e':

case 'I':

case 'i':

case 'O':

case 'o':

case 'U':

case 'u': cout<<"Given character is a vowel";

 break;

default : cout<<"Given character is not a vowel";

}

return 0;

}

177

7. Control Statements

 That is the following code fragment may be used instead of else if ladder.

switch(score/10)

{

case 10 :

case 9 : case 8 : cout<< "A Grade"; break;

case 7 : case 6 : cout<< "B Grade"; break;

case 5 : case 4 : cout<< "C Grade"; break;

case 3 : cout<< "D Grade"; break;

default : cout<< "E Grade";

}

Let us have comparison between switch and else if ladder as indicated in table

7.1

• Permits multiple branching.

• Evaluates conditions with equality

operator only.

• Case constant must be an integer or a

character type value.

• When no match is found, default

statement is executed.

• break statement is required for exit

from the switch statement.

• More efficient when the same variable

or expression is compared against a set

of values for equality.

• Permits multiple branching.

• Evaluate any relational or logical

expression.

• Condition may include range of values

and floating point constants.

• When no expression evaluates to True,

else block is executed.

• Program control automatically goes out

after the completion of a block.

• More flexible and versatile compared

to switch.

switch statement else if ladder

Table 7.1: Comparison between switch and else if ladder

7.1.6 The conditional operator (? :)

As we mentioned in Chapter 5, C++ has a ternary operator. It is the conditional operator

(?:) consisting of symbols ? and : (a question mark and a colon). It requires three

operands to operate upon. It can be used as an alternative to if...else statement.

Its general form is:

Test expression ? True_case code : False_case code;

The Test expression can be any relational or logical expression and True_case

code and False_case code can be constants, variables, expressions or statement.

178

The operation performed by this operator is shown below with the help of an if

statement.

if (Test expression)

{

True_case code;

}

else

{

False_case code;

}

The conditional operator works in the same way as if...else works. It evaluates

the Test expression and if it is True, the True_case code is executed. Otherwise,

False_case code is executed. Program 7.10 illustrates the working of conditional

operator.

The last statement of the program may be called conditional statement as it uses

conditional operator. This statement may be replaced by the following code segment:

int big = (n1>n2) ? n1 : n2;

cout << big << " is larger";

If the test expression evaluates to True, the value of n1 will be assigned to big, otherwise

that of n2. Here conditional operator is used to construct a conditional expression. The

value returned by this expression will be assigned to big.

Check yourself

1. Write a program to input a number in the range 1 to 12 and display the

corresponding month of the year. (January for the value 1, February for 2, etc.)

2. What is the significance of break statement within a switch statement?

3. Rewrite the following statement using if...else statement

result= mark>30 ? 'p' :' f';

#include <iostream>

using namespace std;

int main()

{

int n1, n2;

cout << "Enter two numbers: ";

cin>> n1 >> n2 ;

(n1>n2)? cout<<n1<<" is larger" : cout<<n2<<" is larger";

}

Program 7.10: To find the larger number using conditional operator

179

7. Control Statements

7.2 Iteration statements

In Chapter 3, we discussed some problems for which the solution contains some tasks

that were executed repeatedly. While writing programs, we use some specific constructs

of the language to perform the repeated execution of a set of one or more statements.

Such constructs are called iteration statements or looping statements. In C++, we

have three iteration statements and all of them allow a set of instructions to be executed

repeatedly when a condition is True.

We use the concept of loop in everyday life. Let us consider a situation. Suppose your

class teacher has announced a gift for every student securing A+ grade in an examination.

You are assigned the duty of wrapping the gifts. The teacher has explained the procedure

for wrapping the gifts as follows:

Step 1 : Take the gift

Step 2 : Cut the wrapping paper

Step 3 : Wrap the gift

Step 4 : Tie the cover with a ribbon

Step 5 : Fill up a name card and paste it on the gift pack

If there are 30 students with A+ grade in the examination, you have to repeat the same

procedure 30 times. To repeat the wrapping process 30 times, the instructions can be

restructured in the following way.

Repeat the following steps 30 times

{ Take the next gift

Cut the wrapping paper

Wrap the gift

Tie the cover with a ribbon

Fill up a name card and paste on the gift pack

}

Let us take another example. Suppose we want to find the class average of scores

obtained in Computer Applications. The following steps are to be performed:

Initially Total_Score has no value

Repeat the following steps starting from the first student till the last

{ Add Score of the student to the Total_Score

Take the Score of the next student

}

Average = Total_Score /No. of students in the class

In both the examples, we perform certain steps for a number of times. We use a counter

to know how many times the process is executed. The value of this counter decides

whether to continue the execution or not. Since loops work on the basis of such

180

conditions, a variable like the counter will be used to construct a loop. This variable is

generally known as loop control variable because it actually controls the execution of

the loop. In Chapter 3, we discussed four elements of a loop. Let us refresh them:

1. Initialisation: Before entering a loop, its control variable must be initialised.

During initialisation, the loop control variable gets its first value. The initialisation

statement is executed only once, at the beginning of the loop.

2. Test expression: It is a relational or logical expression whose value is either True

or False. It decides whether the loop-body will be executed or not. If the test

expression evaluates to True, the loop-body gets executed, otherwise it will not

be executed.

3. Update statement: The update statement modifies the loop control variable by

changing its value. The update statement is executed before the next iteration.

4. Body of the loop: The statements that need to be executed repeatedly constitute

the body of the loop. It may be a simple statement or a compound statement.

We learnt in Chapter 3 that loops are generally classified into entry-controlled loops

and exit-controlled loops. C++ provides three loop statements: while loop, for

loop and do...while loop. Let us discuss the working of each one in detail.

7.2.1 while statement

The while loop is an entry-controlled loop. The condition is checked first and if it is

found True the body of the loop will be executed. That is the body will be executed as

long as the condition is True. The syntax of while loop is:

initialisation of loop control variable;

while(test expression)

{

body of the loop;

updation of loop control variable;

}

Here, the test expression defines the condition

which controls the loop. The body of the loop

may be a single statement or a compound statement or

without any statement. The body is the set of statements

for repeated execution. Update expression refers

to a statement that changes the value of the loop control

variable. In a while loop, a loop control variable should

be initialised before the loop begins and it should be

updated inside the body of the loop. The flowchart in

Figure 7.3 illustrates the working of a while loop. Fig 7.3: Working of while loop

False

True

181

7. Control Statements

The initialisation of the loop control variable takes place first. Then the test

expression is evaluated. If it returns True the body of the loop is executed. That is

why while loop is called an entry controlled loop. Along with the loop body, the

loop control variable is updated. After completing the execution of the loop body, test

expression is again evaluated. The process is continued as long as the condition is True.

Now, let us consider a code segment to illustrate the execution of while loop.

In this code segment, the value 1 is assigned to the variable k (loop control variable) at

first. Then the test expression k<=3 is evaluated. Since it is True, the body of the loop

is executed. That is the value of k is printed as 1 on the screen. After that the update

statement ++k is executed and the value of k becomes 2. The condition k<=3 is

checked again and found to be True. Program control enters the body of the loop and

prints the value of k as 2 on the screen. Again the update statement is executed and the

value of k is changed to 3. Since the condition is still True, body is executed and 3 is

displayed on the screen. The value of k is again updated to 4 and now the test expression

is evaluated to be False. The control comes out of the loop and executes the next

statement after the while loop. In short, the output of the code will be:

1 2 3

Imagine what will happen if the initial value of k is 5? The test expression is evaluated to

False in the first evaluation and the loop body will not be executed. This clearly shows

that while loop controls the entry into the body of the loop.

Let us see a program that uses while loop to print the first 10 natural numbers.

int k=1;

while(k<=3)

{

cout << k << ‘\t’;

++k;

}

Initialization before loop begins

Body of loop

Test expression

Updation inside the loop body

Program 7.11: To print the first 10 natural numbers

Initialisation of loop variable

Test expression

Body of loop

#include <iostream>

using namespace std;

int main()

{

int n = 1;

while(n <= 10)

{

cout << n << " ";

++n;

}

}
Updating loop variable

182

If we put a semi colon (;) after the test expression of while statement,

there will not be any syntax error. But the statements within the

following pair of braces will not be considered as loop body. The

worst situation is that, if the test expression is evaluated to be True,

neither the code after the while loop will be executed nor the program will be

terminated. It is a case of infinite loop.

Modify Program 7.11 to display all odd numbers between 100

and 200.

Modify Program 7.12 to find the sum of the first N natural

numbers.
Let us do

The output of Program 7.11 will be as follows:

1 2 3 4 5 6 7 8 9 10

Program 7.12 uses while loop to find the sum of even numbers upto 20. This program

shows that the loop control variable can be updated using any operation.

The output of Program 7.12 is given below:

sum of even numbers up to 20 is: 110

7.2.2 for statement

The for loop is also an entry-controlled loop in C++. All the three loop elements

(initialisation, test expression and update statement) are placed together in for

statement. So it makes the program compact.

#include <iostream>

using namespace std;

int main()

{

int i, sum = 0;

i = 2;

while(i<= 20)

{

sum = sum + i;

i = i + 2;

}

cout<<"\nsum of even numbers up to 20 is: "<<sum;

return 0;

}

Program 7.12: To find the sum of even numbers upto 20

Updating of loop control variable by

adding 2 to the current value

183

7. Control Statements

The syntax is:

for (initialisation; test expression; update statement)

{

body-of-the-loop;

}

The execution of for loop is the same as that

of while loop. The flowchart used for

while can explain the working of for loop.

Since the three elements come together this

statement is more in situations where counting

is involved. So the flowchart given in Figure

7.4 is commonly used to show the execution

of for statement. At first, the

initialisation takes place and then the test expression is evaluated. If its

result is True, body-of-the-loop is executed, otherwise the program control goes

out of the for loop. After the execution of the loop body, update expression is

executed and again test expression is evaluated. These three steps (test, body, update)

are continued until the test expression is evaluated to False.

The loop segment used in Program 7.11 can be replaced with a for loop as follows:

for (n=1; n<=10; ++n)

 cout << n << " ";

Fig 7.4: Execution of for loop

This code is executed in the same way as in the case of while loop.

Let us write a program using for loop to find the factorial of a number. Factorial of a

number, say N, represented by N! is the product of the first N natural numbers. For

example, factorial of 5 (5!) is calculated by 1 × 2 × 3 × 4 × 5 = 120.

The steps 1 and 2 in the execution sequence of the for loop just

mentioned before are given below. Write down the remaining

steps.

Step 1: N =1, Condition is True, 1 is displayed, N becomes 2

Step 2: Condition is True, 2 is displayed, N becomes 3

Step 3: ……………

Let us do

False

True

184

The following is a sample output of Program 7.14 for 5 students
How many students? 5

Enter the score of student 1: 45

Enter the score of student 2: 50

Enter the score of student 3: 52

Enter the score of student 4: 34

Enter the score of student 5: 55

Class Average is: 47.2

The following is a sample output of program 7.13

Enter number to find the factorial: 6

Factorial of 6 is 720

Another program is given below which gives the class average of scores obtained in

Computer Applications. Program 7.14 accepts the value for n as the number of students,

then reads the score of each student and prints the average score.

#include <iostream>

using namespace std;

int main()

{

int n, i, fact=1;

cout<<"Enter number to find the factorial: ";

cin>>n;

for (i=1; i<=n; ++i)

fact = fact * i ;

cout << "Factorial of " << n << " is " << fact;

}

Initialisation; Test Expression; Updation

Loop body

Program 7.13: To find the factorial of a number using for loop

#include <iostream>
using namespace std;
int main()
{

int i, sum, score, n;
float avg;
cout << "How many students? ";
cin >> n ;
for(i=1, sum=0; i<=n; ++i)
{

cout << "Enter the score of student " << i <<": ";
cin >> score;
sum = sum + score;

}
avg = (float)sum / n;
cout << "Class Average is: " << avg;

}

Program 7.14: To find the average score of n students

Initialisation contains

two expressions

Explicit type conversion

185

7. Control Statements

While using for loops certain points are to be noted. The

four code segments explain these special cases. Assume that

all the variables used in the codes are declared with int data

type.

Code segment 1: for (n=1; n<5; n++);

 cout<<n;

A semicolon (;) appears after the parentheses of for statement. It is not

a syntax error. Can you predict the output? If it is 5, you are correct.

This loop has no body. But its process will be completed as usual. The

initialisation assigns 1 to n, condition is evaluated to True, since there is

no body update taking place and the process continues till n becomes 5.

At that point, condition is evaluated to be False and the program control

comes out of the loop. The execution of the output statement displays 5

on the screen

Code segment 2: for (n=1; n<5;)

 cout<<n;

In this code, update expression is not present. It does not make any

syntax error in the code. But on execution, the loop will never be

terminated. The number 1 will be displayed infinitely. We call this an

infinite loop.

Code segment 3: for (; n<5; n++)

 cout<<n;

The output of this code cannot be predicted. Since there is no initialisation,

the control variable n gets some integer value. If it is smaller than 5, the

body will be executed until the condition becomes False. If the default

value of n is greater than or equal to 5, the loop will be terminated without

executing the loop body.

Code segment 4:for (n=1; ; n++)

 cout<<n;

The test expression is missing in this code. C++ takes this absence as

True and obviously the loop becomes an infinite loop. The four code

segments given reveal that all the elements of a for loop are optional.

But this is not the case for while and do...while statements. Test

expression is compulsory for these two loops. Other elements are optional,

but be cautious about the output.

186

In Program 7.14, the initialisation contains two expressions i=1 and sum=0 separated

by comma (,). The initialisation part may contain more than one expression, but they

should be separated by comma. Both the variables i and sum get their first values 1

and 0 respectively. Then, the test expression i<=n is evaluated to be True and body of

the loop is executed. After the execution of the body of the loop the update expression

++i is executed. Again the test expression i<=n is evaluated, and body of the loop is

executed since the condition is True. This process continues till the test expression

returns False. It has occurred in the sample output when the value of i becomes 6.

Fig. 7.5 : Flowchart of
 do...while loop

7.2.3 do...while statement

In the case of for loop and while loop, the test expression is evaluated before

executing the body of the loop. If the test expression evaluates to False for the first time

itself, the body is never executed. But in some situations,

it is necessary to execute the loop body at least once,

without considering the result of the test expression. In

that case the do...while loop is the best choice. Its

syntax is :

initialisation of loop control variable;

do

{

body of the loop;

Updation of loop control variable;

} while(test expression);

Figure 7.5 shows the order of execution of this loop. Here,

the test expression is evaluated only after executing body

of the loop. So do...while loop is an exit controlled

loop. If the test expression evaluates to False, the loop

will be terminated. Otherwise, the execution process will

be continued. It means that in do...while loop the

body will be executed at least once irrespective of the

result of the condition.

Write a program to display the multiplication table of a given number.

Assume that the number will be the input to the variable n. The body

of the loop is given below:

cout<<i<<" x "<<n<<" = "<< i * n <<"\n";

Give the output also.
Let us do

True

False

187

7. Control Statements

Let us consider the following program segment to illustrate the execution of a

do...while loop.

Initialisation before the loop

Test expression at the end

int k=1;

do

{

cout << k << ‘\t’;

++k;

} while(k<=3);

Body of loop

Updation inside the loop body

At first, the value 1 is assigned to the variable k. Then body of the loop is executed and

the value of k is printed as 1. After that the k is incremented by 1 (now k=2). Then it

checks the condition k<=3. Since it is found True the body of the loop is executed to

print the value of k, i.e. 2 on the screen. Again the updation process is carried out,

which makes value of k as 3 and the condition k<=3 is checked again. As it is True,

the body of the loop is executed to print the value 3. The variable k is again updated to

4 and now the condition is evaluated to be False. It causes the program control to

come out of the loop and executes the next statement after the loop body. Thus the

output of the code will be:

1 2 3

Now let us see how this loop differs from the other two. Imagine that the initial value of

k is 5. What will happen? The body of the loop is executed and the value of k will be

printed on the screen as 5. After that the variable k will be updated by incrementing it

by 1 and k becomes 6. On checking the condition k<=3, the test expression is evaluated

to False and the control comes out of the loop. This clearly shows that in do...while

loop there is no restriction to enter the loop body for the first time. So if we want the

body to be executed based on the True value of the condition, use while or for

loops.

Let us see an interactive program in the sense that some part of the code will be executed

on user's choice. The simplest form of such programs provides facility to accept user's

response for executing a code segment in the program repeatedly. Program 7.15

illustrates the use of do...while loop to write an interactive program to find the area

of rectangles by accepting the length and breadth of each rectangle from the user.

188

We have discussed all the three looping statements of C++. Table 7.2 shows a

comparison between these statements.

Entry controlled loop

Initialisation along with

loop definition

No guarantee to execute

the loop body at least once

for loop

Table 7.2 : Comparison between the looping statements of C++

while loop do...while loop

Entry controlled loop

Initialisation before loop

definition

No guarantee to execute

the loop body at least once

Exit controlled loop

Initialisation before loop

definition

Will execute the loop body

at least once even though the

condition is False

A sample output of Program 7.15 is given below:

Enter length and breadth: 3.5 7

Area = 24.5

Any more rectangle (Y/N)? Y

Enter length and breadth: 6 4.5

Area = 27

Any more rectangle (Y/N)? N

Program 7.15: To find the area of rectangles

#include <iostream>

using namespace std;

int main()

{

float length, breadth, area;

char ch;

do

{

cout << "Enter length and breadth: ";

cin >> length >> breadth;

area = length * breadth;

cout << "Area = " << area;

cout << "Any more rectangle (Y/N)? ";

cin >> ch;

} while (ch == 'Y' || ch == 'y');

return 0;

}

User input

User input

User input

189

7. Control Statements

 Let us sum up

The statements providing facilities for taking decisions or for performing repetitive

actions in a program are known as control statements. The control statements are

the backbones of a computer program. In this chapter we covered the different

types of control statements such as selection statements - (if, if…else, if…else

if, switch) and iteration statements or loop statements (for, while, do…while).

All these control statements will help us in writing complex C++ programs. These

statements are essential for varuiys programming operations to be performmed.

 Learning outcomes

After the completion of this chapter the learner will be able to

• use control statements in C++ for problem solving.

• identify the situation where control statements are used in a program.

• use correct control statements suitable for the situations.

• categorise different types of control statements.

• write C++ programs using control statements.

1. Write a program to input a digit and print it in words.

2. Write a program to print first 'n' odd numbers.

3. Write a program to print the sum of squares of first n odd numbers.

4. Write a program to print every integer between 1 and n which are exactly divisible

by m.

Very short answer type

1. Write the significance of break statement in switch statement. What is the effect of
absence of break in a switch statement?

2. What will be the output of the following code fragment?
for(i=1;i<=10;++i) ;

cout<<i+5;

3. Write a program using for loop that will print the numbers between 1000 and
2000 which are divisible by 132.

Lab activity

Sample questions

190

4. Rewrite the following statement using while and do...while loops.
for (i=1; i<=10; i++) cout<<i;

5. How many times the following loop will execute?
int s=0, i=0;

while(i++<5)

s+=i;

Short answer type

1. Consider two program fragments given below.

// version 1 //version 2

cin>>mark; cin>>mark;
 if (mark > = 90) if (mark>=90)

cout<<" A+"; cout<<" A+";
if (mark > = 80 && mark <90) else if (mark>=80 && mark <90)

cout<<" A"; cout<<" A";
if (mark > = 70 && mark <80) else if (mark>=70 && mark <80)

cout<<" B+"; cout<<" B+";
if (mark > = 60 && mark <70) else if (mark>=60 && mark <70)

cout<<" B"; cout<<" B";

discuss the advantages of version 2 over version 1.

2. Briefly explain the working of a for loop along with its syntax. Give an example of
for loop to support your answer.

3. Compare and discuss the suitability of three loops in different situations.

4. What is wrong with the following while statement if the value of z = 3.
while(z>=0)

 sum+=z;

5. Consider the following if else if statement. Rewrite it with switch
command.

if (a==1)

cout << “One”;

else if (a==0)

cout << “Zero”;

else

cout << “Not a binary digit”;

6. Write the importance of a loop control variable. Briefly explain the different parts
of a loop.

Long answer type

1. Explain different types of decision statements in C++.

2. Explain different types of iteration statements available in C++ with syntax and

examples.

