
W
e use variables to store data in
programs. But if the quantity of
data is large, more variables are to

be used. This will cause difficulty in accessing
the required data. We have revised the concept
of C++ data types in Chapter 1 and we used
basic data types to declare variables and
perform type conversion. In this chapter, a
derived data type in C++, named 'array' is
introduced. The word ‘array’ is not a data type
name, rather it is a kind of data type derived
from fundamental data types to handle large
number of data easily. We will discuss the
creation and initialisation of arrays, and
operations like traversal.

2.1 Array and its need
An array is a collection of elements of the
same type placed in contiguous memory
locations. Arrays are used to store a set of
values of the same type under a single variable
name. Each element in an array can be accessed
using its position in the list, called index number
or subscript.

Why do we need arrays? We will illustrate this
with the help of an example. Let us consider a
situation where we need to store the scores of
20 students in a class and has to find their class

2

Significant Learning Outcomes

Arrays

After the completion of this chapter, the

learner

• identifies the scenarios where an

array can be used.

• uses arrays to refer to a group of

data.

• familiarises with the memory

allocation for arrays.

• accesses any element in an array

while solving problems.

• solves problems in which large

amount of data is to be processed.

• represnts strings using character

arrays.

• carries out various word processing

operations using character arrays.

32

Computer Applications (Commerce) - XII

average. If we try to solve this problem by making use of variables, we will need 20
variables to store students’ scores. Remembering and managing these 20 variables
is not an easy task and the program may become complex and difficult to understand.

int a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t;

float avg;

cin>>a>>b>>c>>d>>e>>f>>g>>h>>i>>j>>k>>l>>m>>n>>o>>p>>q>>r>>s>>t;

avg = (a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t)/20.0;

As it is, this code is fine. However, if we want to modify it to deal with the scores of
a large number of students, say 1000, we have a very long and repetitive task at
hand. We have to find a way to reduce the complexity of this task.

The concept of array comes as a boon in such situations. As it is a collection of
elements, memory locations are to be allocated. We know that a declaration statement

is needed for memory allocation. Let us see how arrays are declared and used.

2.1.1 Declaring arrays

Just like the ordinary variable, the array is to be declared properly before it is used.
The syntax for declaring an array in C++ is as follows.

data_type array_name[size];

In the syntax, data_type is the type of data that the array variable can store,
array_name is an identifier for naming the array and the size is a positive integer
number that specifies the number of elements in the array. The following is an
example:

int num[10];

The above statement declares an array named num that can store 10 integer numbers.
Each item in an array is called an element of the array. The elements in the array
are stored sequentially as shown in Figure 2.1. The first element is stored in the first
location; the second element is stored in the second location and so on.

num[0] num[1] num[2] num[3] num[4] num[5] num[6] num[7] num[8] num[9]

Index→ 0 1 2 3 4 5 6 7 8 9

Fig. 2.1: Arrangement of elements in an array

Since the elements in the array are stored sequentially, any element can be accessed
by giving the array’s name and the element’s position. This position is called the
index or subscript value. In C++, the array index starts with zero. If an array is

33

2. Arrays

declared as int num[10]; then the possible index values are from 0 to 9. In this
array, the first element can be referenced as num[0] and the last element as num[9].
The subscripted variable, num[0], is read as “num of zero” or “num zero”. It’s a
shortened way of saying “the num array subscripted by zero”. So, the problem of
referring the scores of 1000 students can be resolved by the following statement:

int score[1000];

The array, named score, can store the scores of 1000 students. The score of the
first student is referenced by score[0] and that of the last by score[999].

2.1.2 Memory allocation for arrays

The amount of storage required to hold an array is directly related to its type and
size. Figure 2.2 shows the memory allocation for the first five elements of array
num, assuming 1000 as the address of the first element. Since num is an integer type
array, size of each element is 4 bytes (in a system with 32 bit integer representation
using GCC) and it will be represented in memory as shown in Figure 2.2.

The memory space allocated for an array can be computed using the following
formula:

total_bytes = sizeof(array_type) × size_of_array

For example, total bytes allocated for the array declared as float a[10]; will be
4 × 10 = 40 bytes.

2.1.3 Array initialisation

Array elements can be initialised in their declaration statements in the same manner
as in the case of variables, except that the values must be included in braces, as
shown in the following examples:

int score[5] = {98, 87, 92, 79, 85};

char code[6] = {‘s’, ‘a’, ‘m’, ‘p’, ‘l’, ‘e’};

float wgpa[7] = {9.60, 6.43, 8.50, 8.65, 5.89, 7.56, 8.22};

Initial values are stored in the order they are written, with the first value used to
initialize element 0, the second value used to initialize element 1, and so on. In the
first example, score[0] is initialized to 98, score[1] is initialized to 87, score[2]
is initialized to 92, score[3] is initialized to 79, and score[4] is initialized to 85.

Fig. 2.2: Memory allocation for an integer array

34

Computer Applications (Commerce) - XII

If the number of initial values is less than the size of the array, they will be stored in
the elements starting from the first position and the remaining positions will be
initialized with zero, in the case of numeric data types. For char type array, such
positions will be initialised with ' ' (space bar) character. When an array is initialized
with values, the size can be omitted. For example, the following declaration statement
will reserve memory for five elements:

int num[] = {16, 12, 10, 14, 11};

2. 1.4 Accessing elements of arrays

Array elements can be used anywhere in a program as we do in the case of normal
variables. We have seen that array is accessed element-wise. That is, only one element
can be accessed at a time. The element is specified by the array name with the subscript.
The following are some examples of using the elements of the array named score:

score[0] = 95;

score[1] = score[0] - 11;

cin >> score[2];

score[3] = 79;

cout << score[2];

sum = score[0] + score[1] + score[2] + score[3] + score[4];

The subscript in brackets can be a variable, a constant or an expression that evaluates
to an integer. In each case, the value of the expression must be within the valid
subscript range of the array. An important advantage of using variable and integer
expressions as subscripts is that, it allows sequencing through an array by using a
loop. This makes statements more structured keeping away from the inappropriate
usage as follows:

sum = score[0] + score[1] + score[2] + score[3] + score[4];

The subscript values in the above statement can be replaced by the control variable
of for loop to access each element in the array sequentially. The following code
segment illustrates this concept:

sum = 0;

for (i=0; i<5; i++)

sum = sum + score[i];

An array element can be assigned a value interactively by using an input statement,
as shown below:

for(int i=0; i<5; i++)

 cin>>score[i];

35

2. Arrays

When this loop is executed, the first value read is stored in the array element
score[0], the second in score[1] and the last in score[4].

Program 2.1 shows how to read 5 numbers and display them in the reverse order.
The program includes two for loops. The first one allows the user to input array
values. After five values have been entered, the second for loop is used to display

the stored values from the last to the first.

Program 2.1: To input the scores of 5 students and display them in

reverse order

#include <iostream>

using namespace std;

int main()

{

int i, score[5];

for(i=0; i<5; i++) // Reads the scores

{

cout<<"Enter a score: ";

cin>>score[i];

}

for(i=4; i>=0; i--) // Prints the scores

cout<<"score[" << i << "] is " << score[i]<<endl;

return 0;

}

The following is a sample output of program 2.1:

Enter a score: 55

Enter a score: 80

Enter a score: 78

Enter a score: 75

Enter a score: 92

score[4] is 92

score[3] is 75

score[2] is 78

score[1] is 80

score[0] is 55

Accessing each element of an array at least once to perform any operation is known
as traversal operation. Displaying all the elements of an array is an example of
traversal. If any operation is performed on all the elements in an array, it is a case of
traversal. Program 2.2 shows how traversal is performed in an array.

36

Computer Applications (Commerce) - XII

 Program 2.2: Traversal of an array

#include <iostream>

using namespace std;

int main()

{

int a[5], i;

cout<<"Enter the elements of the array :";

for(i=0; i<5; i++)

 cin >> a[i]; //Reading the elements

for(i=0; i<5; i++)

 a[i] = a[i] + 1; // A case of traversal

cout<<"\nNow value of elements in the array are...\n";

for(i=0; i<5; i++)

 cout<< a[i]<< "\t"; // Another case of traversal

return 0;

}

The following is a sample output of program 2.2:

Enter the elements of the array : 12 3 6 1 8

Now value of elements in the are...

13 4 7 2 9

1. Write array declarations for the following:
a. Scores of 100 students
b. English letters
c. A list of 10 years
d. A list of 30 real numbers

2. Write array initialization statements for the following:
a. An array of 10 scores: 89, 75, 82, 93, 78, 95, 81, 88, 77,

and 82
b. A list of five amounts: 10.62, 13.98, 18.45, 12.68, and 14.76
c. A list of 100 interest rates, with the first six rates being

6.29, 6.95, 7.25, 7.35, 7.40 and 7.42.
d. An array of 10 marks with value 0.
e. An array with the letters of VIBGYOR.
f. An array with number of days in each month.

3. Write a C++ code to input values into the array: int ar[50];
4. Write a C++ code fragment to display the elements in the even

positions of the array: float val[100];

Let us do

37

2. Arrays

Let us solve another problem that requires traversal operation. Program 2.3 accepts
five numbers from a user and finds the sum of these numbers.

Program 2.3: To find the sum of the elements of an array

#include <iostream>

using namespace std;

int main()

{

int a[5], i, sum;

cout<<"Enter the elements of the array :";

for(i=0; i<5; i++)

 cin >> a[i]; //Reading the elements

sum = 0;

for(i=0; i<5; i++)

 sum = sum + a[i]; // A case of traversal

cout<<"\nSum of the elements of the array is "<< sum;

return 0;

}

The following is a sample output of Program 2.3:

Enter the elements of the array : 12 3 6 1 8

Sum of the elements of the array is 30

Program 2.4 illustrates another case of traversal to find the largest element in an
array. In this program a variable big is used to hold the largest value. Initially it is
assigned with the value in the first location. Then it is compared with the remaining
elements. Whenever a larger value is found, it repalces the value of big.

Program 2.4: To find the largest element in an array

#include <iostream>

using namespace std;

int main()

{

int a[5], i, big;

cout<<"Enter the elements of the array :";

for(i=0; i<5; i++)

 cin >> a[i];

big = a[0];

for(i=1; i<5; i++)

 if (a[i] > big) // A case of traversal

big = a[i];

38

Computer Applications (Commerce) - XII

cout<<"\nThe biggest element is " << big;

return 0;

}

The following is a sample output of program 2.4:

Enter the elements of the array : 12 3 6 1 8

The biggest element is 12

2.2 String handling using arrays

We know that string is a kind of literal in C++ language. It appears in programs as

a sequence of characters within a pair of double quotes. Imagine that you are asked

to write a program to store your name and display it. We have learned that variables

are required to store data. Let us take the identifier my_name as the variable.

Remember that in C++, a variable is to be declared before it is used. A declaration

statement is required for this and it begins with a data type. Which data type should

be used to declare a variable to hold string data? There is no basic data type to

represent string data. We may think of char data type. But note that the variable

declared using char can hold only one character. Here we have to input string

which is a sequence of characters.

Let us consider a name “Niketh”. It is a string consisting of six characters. So it

cannot be stored in a variable of char type. But we know that an array of char

type can hold more than one character. So, we declare an array as follows:

char my_name[10];

It is sure that ten contiguous locations, each with one byte size, will be allocated for

the array named my_name. If we follow the usual array initialization method, we

can store the characters in the string “Niketh” as follows:

char my_name[10]={'N', 'i', 'k', 'e', 't', 'h'};

Figure 2.3 shows the memory allocation for the above declared character array.

Note that, we store the letters in the string separated by commas. If we want to

input the same data, the following C++ statement can be used:

for (int i=0; i<6; i++)

 cin >> my_name[i];

During the execution of this statement, we have to input six letters of “Niketh”

one after the other separated by Space bar, Tab or Enter key. The memory allocation

in both of these cases will be as shown in Figure 2.3.

39

2. Arrays

Fig. 2.3 : Memory allocation for the character array

my_name

N i k e t h

0 1 2 3 4 5 6 7 8 9

Subscripts

Elements

Array Name

So, let us conclude that a character array can be used to store a string, since it is a
sequence of characters. However, it is true that we do not get the feel of inputting
a string. Instead, we input the characters constituting the string one by one.

In C++, character arrays have some privileges over other arrays. Once we declare a
character array, the array name can be considered as an ordinary variable that can
hold string data. Let’s say that a character array name is equivalent to a string variable.
Thus your name can be stored in the variable my_name (the array name) using the
following statement:

cin >> my_name;

It is important to note that this kind of usage is wrong in the case of arrays of other
data types. Now let us complete the program. It will be like the one given in Program
2.5.

Program 2.5 To input a string and display

#include <iostream>

using namespace std;

int main()

{

char my_name[10];

cout << "Enter your name: ";

cin >> my_name;

cout << "Hello " << my_name;

return 0;

}

On executing this program we will get the output as shown below.

Enter your name: Niketh

Hello Niketh

Note that the string constant is not "Hello", but "Hello " (a white space is
given after the letter 'o').

40

Computer Applications (Commerce) - XII

Null character '\0' is stored

at the end of the string

Fig. 2.4 : Memory allocation for the character array

my_name

N i k e t h \0

0 1 2 3 4 5 6 7 8 9

Array Name

Run Program 2.5 and input your full name by expanding the initials
if any, and check whether the output is correct or not. If your name
contains more than 10 characters, increase the size of the array as
needed.Let us do

2.3 Memory allocation for strings

We have seen how memory is allocated for an array of characters. As Figure 2.3
shows, the memory required depends upon the number of characters stored. But if
we input a string in a character array, the scene will be different. If we run Program
2.5 and input the string Niketh, the memory allocation will be as shown in Figure
2.4.

Note that a null character '\0' is stored at the end of the string. This character is
used as the string terminator and added at the end automatically. Thus we can say
that memory required to store a string will be equal to the number of characters in
the string plus one byte for null character. In the above case, the memory used to
store the string Niketh is seven bytes, but the number of characters in the string is
only six.

As in the case of variable initialization, we can initialize a character array with a
string as follows:

char my_name[10] = "Niketh";

char str[] = "Hello World";

In the first statement 10 memory locations will be allocated and the string will be
stored with null character as the delimiter. The last three bytes will be left unused.
But, for the second statement, size of the array is not specified and hence only 12
bytes will be allocated (11 bytes for the string and 1 for '\0').

2.4 Input/Output operations on strings
Program 2.5 contains input and output statements for string data. Let us modify
the declaration statement by changing the size of the array to 20. If we run the
program by entering the name Maya Mohan, the output will be as follows:

Enter your name: Maya Mohan

Hello Maya

41

2. Arrays

Note that though there is enough size for the array, we get only the word "Maya" as
the output. Why does this happen?

Let us have a close look at the input statement: cin>>my_name;. We have
experienced that only one data item can be input using this statement. A white
space is treated as a separator of data. Thus, the input Maya Mohan is treated as
two data items, Maya and Mohan separated by white space. Since there is only
one input operator (>>) followed by a variable, the first data (i.e., Maya) is stored.
The white space after "Maya" is treated as the delimiter.

So, the problem is that we are unable to input strings containing white spaces. C++
language gives a solution to this problem by a function, named gets(). The function
gets() is a console input function used to accept a string of characters including
white spaces from the standard input device (keyboard) and store it in a character
array.

The string variable (character array name) should be provided to this function as
shown below:

gets(character_array_name);

When we use this function, we have to include the library file cstdio.h in the
program. Let us modify Program 2.5, by including the statement
#include<cstdio>, and replacing the statement cin>>my_name; by
gets(my_name); After executing the modified program, the output will be as
follows:

Enter your name: Maya Mohan

Hello Maya Mohan

The output shows the entire string that we input. See the difference between gets()
and cin.

Though we do not use the concept of subscripted variable for the input and output
of strings, any element in the array can be accessed by specifying its subscript along
with the array name. We can access the first character of the string by my_name[0],
fifth character by my_name[4] and so on. We can even access the null character
('\0') by its subscript. Program 2.6 illustrates this idea.

Program 2.6: To input a string and count the vowels in a string

#include <iostream>

#include <cstdio> //To use gets() function

using namespace std;

int main()

{

char str[20];

42

Computer Applications (Commerce) - XII

int vow=0;

cout<<"Enter a string: ";

gets(str);

for(int i=0; str[i]!='\0'; i++)

switch(str[i])

{ case 'a':

case 'e':

case 'i':

case 'o':

case 'u': vow++;

}

cout<<"No. of vowels in the string "<<str<<" is "<<vow;

return 0;

}

If we run Program 2.6 by inputting the string “hello guys”, the following output
can be seen:

Enter a string: hello guys

No. of vowels in the string hello guys is 3

Now, let us analyse the program and see how it works to give this output.

l In the beginning, the gets() function is used and so we can input the string
"hello guys".

l The body of the for loop will be executed as long as the element in the array,
referenced by the subscript i, is not the null character ('\0'). That is, the
body of the loop will be executed till the null character is referenced.

l The body of the loop contains only a switch statement. Note that, no
statements are given against the first four cases of the switch. In the last
case, the variable vow is incremented by 1. You may think that this is required
for all the cases. Yes, you are right. But, you should use the break statement
for each case to exit the switch after a match. In this program the action for
all the cases are the same and that is why we use this style of code.

l While the for loop iterates, the characters will be retrieved one by one for
matching against the constants attached to the cases. Whenever a match is found,
the variable vow is incremented by 1.

l As per the input string, matches occur when the value of i becomes 1, 4 and 7.
Thus, the variable vow is incremented by 1 three times and we get the correct
output.

We have seen how gets() function facilitates input of strings. Just like the other

side of a coin, C++ gives a console function named puts() to output string data.

43

2. Arrays

The function puts() is a console output function used to display a string data on

the standard output device (monitor). Its syntax is:
puts(string_data);

The string constant or variable (character array name) to be displayed should be
provided to this function. Observe the following C++ code fragment:

char str[10] = "friends";

puts("hello");

puts(str);

The output of the above code will be as follows:

hello

friends

Note that the string "friends" in the character array str[10] is displayed in a
new line. Try this code using cout<<“hello”; and cout<<str; instead of the
puts() functions and see the difference. The output will be in the same line without

a space in between them in the case of cout statement.

Predict the output, if the input is “HELLO GUYS” in Program 2.6.
Execute the program with this input and check whether you get the
correct output. Find out the reason for difference in output. Modify
the program to get the correct output for any given string.

Let us do

 Let us practice

1. Write a C++ program to input the amount of sales for 12 months into an
array named SalesAmt. After all the input, find the total and average amount
of sales.

2. Write a C++ program to create an array of N numbers, find the average and
display those numbers greater than the average.

Let us conclude

We have discussed array as a data type to refer to a group of same type of data.
Memory allocation for arrays is explained with the help of schematic diagrams. The
use of looping statements, especially for loop in manipulating the elements of an
array are also illustrated through programs. We have also seen that how arrays help
to handle strings effectively in programs.

44

Computer Applications (Commerce) - XII

12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567
12345678901234567890123456789012123456789012345678901234567890121234567

3. Write a C++ program to swap the first and the last elements of an integer
array.

4. Write a C++ program to input 10 integer numbers into an array and determine
the maximum and minimum values among them.

5. Write a C++ program to input a string and find the number of uppercase
letters, lowercase letters, digits, special characters and white spaces.

6. Write a C++ program to count the number of words in a sentence.

7. Write a C++ program to find the length of a string.

 Let us assess

1. The elements of an array with ten elements are numbered from ____ to ____.

2. An array element is accessed using _____.

3. If AR is an array, which element will be referenced using AR[7]?

4. Consider the array declaration int a[3]={2,3,4}; What is the value of a[1]?

5. Consider the array declaration int a[]={1,2,4}; What is the value of a[1]?

6. Printing all the elements of an array is an example for _____ operation.

7. Write down the output of the following code segment:
puts(“hello”);

puts(“friends”);

8. Write the initialisation statement to store the string "GCC".

9. Define an Array.

10. What does the declaration int studlist[1000]; mean?

11. How is memory allocated for a single dimensional array?

12. Write C++ statements to accept an array of 10 elements and display the count
of even and odd numbers in it.

13. Read the following statements:
char name[20];

cin>>name;

cout<<name;

What will be the output if you input the string “Sachin Tendulkar”? Justify
your answer.

14. Write C++ statements to accept two single dimensional arrays of equal length
and find the difference between corresponding elements.

15. Write a program to check whether a string is a palindrome or not.

