
Functions

After the completion of this chapter, the

learner

• identifies the merits of modular

programming in problem solving.

• classifies various input output

functions for character and string

data.

• compares character input functions.

• uses appropriate character and

string functions for the I/O

operations.

• applies mathematical functions for

solving problems.

• uses string functions for the

manipulation of string data.

• manipulates character data with

predefined character functions.

• implements modular programming

by creating functions.

• identifies the role of arguments and

compares different methods of

function calling.

• recognises the scope of variables

and functions in a program.

W
e discussed some simple programs
in the previous chapters. But to
solve complex problems, larger

programs running into thousands of lines
of code are required. Complex problems
are divided into smaller ones and programs
to solve each of these sub problems are
written. In other words, we break the larger
programs into smaller sub programs.. In
C++, function is a way to divide large
programs into smaller sub programs. We are
familiar with the function main(). We know
that it is the essential function in a C++
program. The statements required to solve
a problem are given within a pair of braces
{ and } after the header int main(). We
have not broken a problem into sub
problems so far and hence the entire task is
assisgned to main()function. But there are
some functions readily available for use,
which makes programming simpler. Each of
them is assigned with a specific task and they
are stored in header files. So, these functions
are known as built-in functions or predefined
functions. Besides such functions, we can
define functions for a specific task. These are
called user-defined functions. In this chapter
we will discuss some important predefined

3 Functions

Significant Learning Outcomes

46

Computer Applications (Commerce) - XII

functions and learn how to define our own functions. Before going into these, let us
familiarise ourselves with a style of programming called modular programming.

3.1 Concept of modular programming

Let us consider the case of a school management software. It is a very large and
complex software which may contain many programs for different tasks. The
complex task of school management can be divided into smaller tasks or modules
and developed in parallel, and later integrated to build the complete software as
shown in Figure 3.1.

Fig. 31: Modular programming style

In programming, the entire problem will be divided into small sub problems that
can be solved by writing separate programs. This kind of approach is known as
modular programming. Each sub task will be considered as a module and we write
programs for each module. The process of breaking large programs into smaller
sub programs is called modularization. Computer programming languages have
different methods to implement modularization. The sub programs are generally
called functions. C++ also facilitates modular programming with functions.

3.1.1 Merits of modular programming

The modular style of programming has many advantages. It reduces the complexity
and size of the program, makes the program more readable, improves re-usability
and makes the debugging process easy. Let us discuss these features in detail:

Reduces the size of the program: In some cases, certain instructions in a program
may be repeated at different points of the program. Consider the expression

yx

yx

+

+
75

. To evaluate this expression for given values of x and y, we have to use

instructions for the following:

47

3. Functions

1. find the 5th power of x.

2. find the 7th power of y.

3. add the results obtained in steps 1 and 2.

4. find the square root of x.

5. find the square root of y.

6. add the result obtained in steps 4 and 5.

7. divide the result obtained in step 3 by that in step 6.

We know that separate loops are needed to find the results of steps 1 and 2. Can
you imagine the complexity of the logic to find the square root of a number? It is
clear that the program requires the same instructions to process different data at
different points. The modular approach helps to isolate the repeating task and write
instructions for this. We can assign a name to this set of instructions and this can be
invoked by using that name. Thus program size is reduced.

Less chance of error occurrence: When the size of program is reduced, naturally
syntax errors will be less in number. The chance of logical error will also be minimized
because in a modularized program, we need to concentrate only on one module at
a time.

Reduces programming complexity: The net result of the two advantages
discovered above is reducing programming complexity. If we properly divide the
problem into smaller conceptual units, the development of logic for the solution
will be simpler.

Improves reusability: A function written once may be used later in many other
programs, instead of starting from scratch. This reduces the time taken for program
development.

3.1.2 Demerits of modular programming

Though there are significant merits in modular
programming, proper breaking down of the problem is a
challenging task. Each sub problem must be independent
of others. Utmost care should be given while setting the
hierarchy of the execution of the modules.

3.2 Functions in C++

Let us consider the case of a coffee making machine and
discuss its function based on Figure 3.2. Water, milk, sugar
and coffee powder are supplied to the machine. The machine

Fig. 3.2 : Function of
coffee making machine

48

Computer Applications (Commerce) - XII

processes it according to a set of predefined instructions stored in it and returns
coffee which is collected in a cup. The instruction-set may be as follows:

1. Get 60 ml milk, 120 ml water, 5 gm coffee powder and 20 gm sugar from the
storage of the machine.

2. Boil the mixture

3. Pass it to the outlet.

Usually there will be a button in the machine to invoke this procedure. Let us name
the button with the word “MakeCoffee”. Symbolically we can represent the
invocation as:

Cup = MakeCoffee (Water, Milk, Sugar, Coffee Powder)

We can compare all these aspects with functions in programs. The word
“MakeCoffee” is the name of the function, “Water”, “milk”, “sugar” and “coffee
powder” are parameters for the function and “coffee” is the result returned. It is
stored in a “Cup”. Instead of cup, we can use a glass, tumbler or any other container.

Similarly, a C++ function accepts parameters, processes it and
returns the result. Figure 3.3 can be viewed as a function Add

that accepts 3, 5, 2 and 6 as parameters, adds them and returns
the value which is stored in the variable C. It can be written as:

C = Add (3, 5, 2, 6)

We can say that function is a named unit of statements in a
program to perform a specific task as part of the solution. It is
not necessary that all the functions require some parameters and
all of them return some value. C++ provides a rich collection of functions ready to
be used for various tasks. The tasks to be performed by each of these are already
written, debugged and compiled, their definitions alone are grouped and stored in
files called header files. Such ready-to-use sub programs are called predefined
functions or built-in functions.

While writing large programs, the predefined functions may not suffice to apply
modularization. C++ provides the facility to create our own functions for some
specific tasks. Everything related to a function such as the task to be carried out, the
name and data required are decided by the user and hence they are known as user-
defined functions.

What is the role of main() function then? It may be considered as user-defined in
the sense that the task will be defined by the user. We have learnt that it is an essential
function in a C++ program because the execution of a program begins in main().

Fig. 3.3. Addition
function

C

49

3. Functions

Without main(), C++ program will not run. All other functions will be executed
when they are called or invoked (or used) in a statement.

3.3 Predefined functions

C++ provides a number of functions for various tasks. We will discuss only the
most commonly used functions. While using these functions, some of them require
data for performing the task assigned to it. We call them parameters or arguments
and are provided within the pair of parentheses of the function name. There are
certain functions which give results after performing the task. This result is known
as return-value of the function. Some functions do not return any value, rather
they perform the specified task. In the following sections, we discuss functions for
manipulating strings, performing mathematical operations and processing character
data. While using these functions the concerned header files are to be included in
the program.

3.3.1 Console functions for character I/O

We have discussed functions for input/output operations on strings. C++ also
provides some functions for performing input/ouput operations on characters. In
Chapter 2, we discussed gets() function and its advantage in string input. Now
let us see some functions to input and output character data. These functions require
the inclusion of header file cstdio (stdio.h in Turbo C++ IDE) in the program.

getchar()

This function returns the character that is input through the keyboard. The character
can be stored in a variable as shown in the example given below:

char ch = getchar();

In the previous chapter we have seen puts() function and its advantage in string
output. Let us have a look at a function used to output character data.

putchar()

This function displays the character given as the argument on the standard output
unit (monitor). The argument may be a character constant or a variable. If an integer
value is given as the argument, it will be considered as an ASCII value and the
corresponding character will be displayed. The following code segment illustrates
the use of putchar() function.

char ch = 'B'; //assigns 'B' to the variable ch

putchar(ch); //displays 'B' on the screen

putchar('c'); //displays 'c' on the screen

putchar(97); //displays 'a' on the screen

50

Computer Applications (Commerce) - XII

Program 3.1 illustrates the working of these functions. This program allows inputting
a string and a character to be searched.

Program 3.1: To search for a character in a string using console functions

#include <iostream>

#include <cstdio>

using namespace std;

int main()

{

char str[20], ch;

int i, num=0;

puts("Enter a string:"); //To print '\n' after the string

gets(str);//To accept a string with white spaces

cout<<"\nEnter the character to be searched: ";

ch=getchar(); //To input the character to be searched

/* A loop to search for the character and count its

occurrences in the string. Search will be

terminated when null character is found */

for(i=0; str[i]!='\0'; i++)

if (str[i]==ch)

num++;

cout<<"\nThe number of occurences of the character ";

putchar(ch);

cout<<" is : "<<num;

return 0;

}

Sample output of the above program is given below

Enter a string:

examination

Enter the character to be searched: a

The number of occurences of the character a is : 2

3.3.2 Stream functions for I/O operations

C++ provides another facility to perform input/output operations on character
and strings. It is in the form of functions that are available in the header file iostream.
These functions are generally called stream functions since they allow a stream of
bytes (data) to flow between memory and objects. Devices like the keyboard and
the monitor are referenced as objects in C++. Let us discuss some of these functions.

51

3. Functions

A. Input functions

These functions allow the input of character and string data. The input functions
such as get() and getline() allow a stream of bytes to flow from input object
into the memory. The object cin is used to refer to keyboard and hence whenever
we input data using keyboard, these functions are called or invoked using this object
as cin.get() and cin.getline(). Note that a period symbol (.), called dot
operator is used between the object cin and the function.

i. get()

It can accept a single character or multiple characters (string) through the keyboard.
To accept a string, an array name and size are to be given as arguments. Following
code segment illustrates the usage of this function.

char ch, str[10];

ch=cin.get(ch); //accepts a character and stores in ch
cin.get(ch); //equivalent to the above statement

cin.get(str,10); //accepts a string of maximum 10 characters

ii. getline()

It accepts a string through the keyboard. The delimiter will be Enter key, the number
of characters or a specified character. This function uses two syntaxes as shown in
the code segment given below.

char ch, str[10];

int len;

cin.getline(str,len); // With 2 arguments

cin.getline(str,len,ch); // With 3 arguments

In the first usage, getline() function has two arguments - a character array (here
it is, str) and an integer (len) that represents maximum number of characters that
can be stored. In the second usage, a delimiting character (content of ch) can also
be given along with the number of characters. While inputting the string, only
(len–1) characters, or characters upto the specified delimiting character, whichever
occurs first will be stored in the array.

B. Output functions

Output functions like put() and write() allow a stream of bytes to flow from
memory into an output object. The object cout is used with these functions since
we use the monitor for the output.

i. put()

It is used to display a character constant or the content of a character variable given
as argument.

52

Computer Applications (Commerce) - XII

char ch='c';

cout.put(ch); //character 'c' is displayed

cout.put('B'); //character 'B' is printed

cout.put(65); //character 'A' is printed

ii. write()

This function displays the string contained in the argument. For illustration see the
example given below.

char str[10]="hello";

cout.write(str,10);

The above code segment will dispaly the string hello followed by 5 white spaces,
since the second argument is 10 and the number of characters in the string is 5.

Program 3.2: To illustrate the working of stream input/output functions

#include <iostream>

#include <cstring> //To use strlen() function

using namespace std;

int main()

{

char ch, str[20];

cout<<"Enter a character: ";

cin.get(ch); //To input a character to the variable ch

cout<<"Enter a string: ";

cin.getline(str,10,'.'); //To input the string

cout<<"Entered character is:\t";

cout.put(ch); //To display the character

cout.write("\nEntered string is:",20);

cout.write(str,strlen(str));

return 0;

}

On executing Program 3.2, the following output will be obtained:

Enter a character: p

Enter a string: hello world

Entered character is: p

Entered string is:

hello wo

Let us discuss what happens when the program is executed. In the beginning, get()
function allows to input a character, say p. When the function getline() is executed,
we can input a string, say hello world. The put() function is then executed to

53

3. Functions

display the character p. Observe that the write() function displays only hello
wo in a new line. In the getline() function, we specified the integer 10 as the
maximum number of characters to be stored in the array str. Usually 9 characters
will be stored, since one byte is reserved for '\0' character as the string terminator.
But the output shows only 8 characters including white space. This is because, the
Enter key followed by the character input (p) for the get() function, is stored as
the '\n' character in the first location of str. That is why, the string, hello wo is
displayed in a new line.

If we run the program, by giving the input hello.world, the output will be as
follows: Observe the change in the content of str.

Enter a character: a

Enter a string: hello.world

Entered character is: a

Entered string is:

hello

The change has occurred because the getline() function accepts only the
characters that appear before the dot symbol.

3.3.3 String functions

While solving problems string data may be involved for processing. C++ provides
string functions for their manipulation. The header file cstring (string.h in Turbo
C++) is to be included in the program to use these functions.

i. strlen()

This function is used to find the length of a string. Length of a string means the
number of characters in the string. Its syntax is:

int strlen(string);

This function takes a string as the argument and gives the length of the string as the
result. The following code segment illustrates this.

char str[] = "Welcome";

int n;

n = strlen(str);

cout << n;

Here, the argument for the strlen() function is a string variable and it returns
the number of characters in the string, i.e. 7 to the variable n. Hence the program
code will display 7 as the value of the variable n. The output will be the same even
though the array declaration is as follows.

char str[10] = "Welcome";

54

Computer Applications (Commerce) - XII

Note that the array size is specified in the declaration. The argument may be a string
constant as shown below:

n = strlen("Computer");

The above statement returns 8 and will be stored in n.

ii. strcpy()

This function is used to copy one string into another. The syntax of the function is:
strcpy(string1, string2);

The function will copy string2 to string1. Here string1 is an array of
characters and string2 is an array of characters or a string constants. These are
the arguments for the execution of the function. The following code illustrates its
working:

char s1[10], s2[10] = "Welcome";

strcpy(s1,s2);

cout << s1;

The string "Welcome" contained in the string variable s1 will be displayed on the
screen. The second argument may be a string constant as follows:

char str[10]

strcpy(str,"Welcome");

Here, the string constant "Welcome" will be stored in the variable str. The
assignment statement, str = "Welcome"; is wrong. But we can directly assign
value to a character array at the time of declaration as:

char str[10] = "Welcome";

iii. strcat()

This function is used to append one string to another string. The length of the
resultant string is the total length of the two strings. The syntax of the functions is:

strcat(string1, string2);

Here string1 and string2 are array of characters or string constants. string2
is appended to string1. So, the size of the first argument should be able to
accommodate both the strings together. Let us see an example showing the usage
of this function:

char s1[20] = "Welcome", s2[10] = " to C++";

strcat(s1,s2);

cout << s1;

The above program code will display "Welcome to C++" as the value of the
variable s1. Note that the string in s2 begins with a white space.

55

3. Functions

iv. strcmp()

This function is used to compare two strings. In this comparison, the alphabetical
order of characters in the strings is considered. The syntax of the function is:

strcmp(string1, string2)

The function returns any of the following values in three different situations.

• Returns 0 if string1 and string2 are same.

• Returns a –ve value if string1 is alphabetically lower than string2.

• Returns a +ve value if string1 is alphabetically higher than string2.

The following code fragment shows the working of this function.

char s1[]="Deepthi", s2[]="Divya";

int n;

n = strcmp(s1,s2);

if(n==0)

cout<<"Both the strings are same";

else if(n < 0)

cout<<"s1 < s2";

else

cout<<"s1 > s2";

It is clear that the above program code will display "s1 < s2" as the output.

v. strcmpi()

This function is used to compare two strings ignoring cases. That is, the function
will treat both the upper case and lower case letters as same for comparison. The
syntax and working of the function are the same as that of strcmp() except that
strcmpi() is not case sensitive. This function also returns values as in the case of
strcmp(). Consider the following code segment:

char s1[]="SANIL", s2[]="sanil";

int n;

n = strcmpi(s1,s2);

if(n==0)

cout<<"strings are same";

else if(n < 0)

cout<<"s1 < s2";

else

cout<<"s1 > s2";

The above program code will display "strings are same" as the output,
because the uppercase and lowercase letters will be treated as same during the
comparison.

56

Computer Applications (Commerce) - XII

Program 3.3 compares and concatenates two strings. The length of the newly formed
string is also displayed.

Program 3.3 : To combine two strings if they are different and find its length

#include <iostream>

#include <cstring>

using namespace std;

int main()

{

char s1[15], s2[15], s3[30];

cout<<"Enter two strings: ";

cin>>s1>>s2;

int n;

n=strcmp(s1,s2);

if (n==0)

cout<<"\nThe input strings are same";

else

{

cout<<"\nThe input strings are not same";

strcpy(s3,s1);//Copies the string in s1 into s3

strcat(s3,s2);//Appends the string in s2 to that in s3

cout<<"String after concatenation is: "<<s3;

cout<<"\nLength of the new string is: "

 <<strlen(s3);

}

return 0;

}

Sample Output:

Enter two strings:india

kerala

The input strings are not same

String after concatenation is:indiakerala

Length of the new string is: 11

3.3.4 Mathematical functions

Now, let us discuss the commonly used mathematical functions available in C++.
We should include the header file cmath (math.h in Turbo C++) to use these
functions in the program.

Header file essential

for using string

manipulating functions

57

3. Functions

i. abs()

It is used to find the absolute value of an integer. It takes an integer as the argument

(+ve or –ve) and returns the absolute value. Its syntax is:

int abs(int)

The following is an example to show the output of this function:

int n = -25;

cout << abs(n);

The above program code will display 25. If we want to find the absolute value of a

floating point number, we can use fabs() function as used above. It will return

the floating point value.

ii. sqrt()

It is used to find the square root of a number. The argument to this function can be

of type int, float or double. The function returns the non-negative square

root of the argument. Its syntax is:

double sqrt(double)

The following code snippet is an example. This code will display 5.

int n = 25;

float b = sqrt(n);

cout << b;

If the value of n is 25.4, then the answer will be 5.03841

iii. pow()

This function is used to find the power of a number. It takes two arguments x and

y. The argument x and y are of type int, float or double. The function returns

the value of xy. Its syntax is:

double pow(double, double)

The following example shows the working of this function.

int x = 5, y = 4, z;

z = pow(x, y);

cout << z;

The above program code will display 625.

xy means 54 which is 5*5*5*5 i.e. 625

58

Computer Applications (Commerce) - XII

Program 3.4 : To find the area of a triangle and a circle using mathematical

functions

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

const float pi=22.0/7;

int a,b,c, radius;

float s, area1, area2;

cout<<"Enter the three sides of the triangle: ";

cin>>a>>b>>c;

s = (a+b+c)/2.0;

area1 = sqrt(s*(s-a)*(s-b)*(s-c));

cout<<"The Area of the Triangle is: "<<area1;

cout<<"\nEnter the radius of the circle: ";

cin>>radius;

area2 = pi*pow(radius,2);

cout<<"Area of the Circle is: "<<area2;

return 0;

}

The following is a sample output of the above program:

Enter the three sides of the triangle: 5 7 9

The Area of the Triangle is: 17.4123

Enter the radius of the circle: 2.5

Area of the Circle is: 12.5714

3.3.5 Character functions

These functions are used to perform various operations on characters. Following
are the various character functions available in C++. The header file cctype (ctype.h
in Turbo C++) is to be included to use these functions in a program.

i. isupper()

This function is used to check whether a character is in upper case(capital letter) or
not. The syntax of the function is:

int isupper(char c)

The function returns 1 if the given character is in uppercase, and 0 otherwise.

Header file essential

for using mathematical

functions

59

3. Functions

The following statement assigns 0 to the variable n.

int n = isupper('x');

Consider the following statements:

char c = 'A';

int n = isupper(c);

The value of the variable n, after the execution of the above statements will be 1,
since the given character is in upper case.

ii. islower()

This function is used to check whether a character is in lower case (small letter) or
not. The syntax of the function is:

int islower(char c)

The function returns 1 if the given character is lower case, and 0 otherwise.

After executing the following statements, the value of the variable n will be 1 since
the given character is in lower case.

char ch = 'x';

int n = islower(ch);

But the statement given below assigns 0 to the variable n, since the given character
is in the uppercase.

int n = islower('A');

iii. isalpha()

This function is used to check whether the given character is an alphabet or not.
The syntax of the function is:

int isalpha(char c)

The function returns 1 if the given character is an alphabet, and 0 otherwise.

The following statement assigns 0 to the variable n, since the given character is not
an alphabet.

int n = isalpha('3');

But the statement given below displays 1, since the given character is an alphabet.

cout << isalpha('a');

iv. isdigit()

This function is used to check whether the given character is a digit or not. The
syntax of the function is:

int isdigit(char c)

60

Computer Applications (Commerce) - XII

The function returns 1 if the given character is a digit, and 0 otherwise.

After executing the following statement, the value of the variable n will be 1 since
the given character is a digit.

n = isdigit('3');

When the following statements are executed, the value of the variable n will be 0,
since the given character is not a digit.

char c = 'b';

int n = isdigit(c);

v. isalnum()

This function is used to check whether a character is alphanumeric or not. The
syntax of the function is:

int isalnum (char c)

The function returns 1 if the given character is alphanumeric, and 0 otherwise.

Each of the following statements returns 1 after the execution.

n = isalnum('3');

cout << isalnum('A');

But the statements given below assigns 0 to the variable n, since the given character
is neither alphabet nor digit.

char c = '-';

int n = isalnum(c);

vi. toupper()

This function is used to convert the given character into its uppercase. The syntax
of the function is:

char toupper(char c)

The function returns the upper case of the given character. If the given character is
in upper case, the output will be the same.

The following statement assigns the character constant 'A' to the variable c.

char c = toupper('a');

But the output of the statement given below will be 'A' itself.

cout << (char)toupper('A');

Note that type conversion using (char) is used in this statement. If conversion
method is not used, the output will be 65, which is the ASCII code of 'A'.

61

3. Functions

vii. tolower()

This function is used to convert the given character into its lower case. The syntax
of the function is:

char tolower(char c)

The function returns the lower case of the given character. If the given character is
in lowercase, the output will be the same.

Consider the statement: c = tolower('A');

After executing the above statement, the value of the variable c will be 'a'. But
when the following statements will be executed, the value of the variable c will be
'a' itself.

char x = ‘a’;

char c = tolower(x) ;

In the case of functions tolower() and toupper(), if the argument is other than
alphabet, the given character itself will be returned on execution.

Program 3.5 illustrates the use of character functions. This program accepts a line
of text and counts the lowercase letters, uppercase letters and digits in the string. It
also displays the entire string both in uppercase and lowercase.

Program 3.5: To count different types of characters in the given string

#include <iostream>

#include <cstdio>

#include <cctype>

using namespace std;

int main()

{

char text[80];

int Ucase=0, Lcase=0, Digit=0;

cout << "Enter a line of text: ";

gets(text);

for(int i=0; text[i]!=’\0'; i++)

if (isupper(text[i]))

Ucase++;

else if (islower(text[i]))

Lcase++;

else if (isdigit(text[i]))

Digit++;

Loop will be

terminated when the

value of i point to the

null character

62

Computer Applications (Commerce) - XII

cout << "\nNo. of uppercase letters = " << Ucase;

cout << "\nNo. of lowercase letters = " << Lcase;

cout << "\nNo. of digits = " << Digit;

cout << "\nThe string in uppercase form is\n";

i=0;

while (text[i]!='\0')

{

putchar(toupper(text[i]));

i++;

}

cout << "\nThe string in lowercase form is\n";

i=0;

do

{

putchar(tolower(text[i]));

i++;

}while(text[i]!='\0');

return 0;

}

A sample output is given below:

Enter a line of text : The vehicle ID is KL01 AB101

No. of uppercase letters = 7

No. of lowercase letters = 11

No. of digits = 5

The string in uppercase form is

THE VEHICLE ID IS KL01 AB101

The string in lowercase form is

the vehicle id is kl01 ab101

If cout<< is used

 instead of putchar(),

the ASCII code of the

characters will be

displayed

Let us do

Prepare a chart in the following format and fill up the columns with all

predefined functions we have discussed so far.

Function Usage Syntax Example Output

63

3. Functions

3.4 User-defined functions

All the programs that we have discussed so far contain a function named main().
We know that a C++ program begins with preprocessor directive statements
followed by using namespace statement. The remaining part is actually the
definition of a function. The int main() in the programs is called function
header (or function heading) of the function and the statements within the pair of
braces immediately after the header is called its body.

The syntax of a function definition is given below:

data_type function_name(argument_list)

{

statements in the body;

}

The data_type is any valid data type of C++. The function_name is a user-
defined word (identifier). The argument_list, which is optional, is a list of
parameters, i.e. a list of variables preceded by data types and separated by commas.
The body comprises of C++ statements required to perform the task assigned to
the function. Once we have decided to create a function, we have to answer certain
questions.

(i) Which data type will be used in the function header?

(ii) How many arguments are required and what should be the preceding data
type of each?

Know your progress

1. What is modular programming?

2. What is meant by a function in C++?

3. Name the header file required for using character functions.

4. Predict the output of cout<<sqrt(49).

5. Pick the odd one out and give reason:
a. strlen() b. pow() c. strcpy() d. strcat()

6. Name the header file needed for the function pow().

7. Predict the output when we compare the strings "HELLO" and
"hello" using the function strcmpi().

8. What will be output of the statement
cout<<strlen("smoking kills"); ?

9. Which function converts the alphabet 'P' to 'p'?

10. Identify the name of the function which tests whether the
argument is an aphabet or number.

64

Computer Applications (Commerce) - XII

Let us recollect how we have used the predefined functions strcpy() and sqrt().
We have seen that these functions will be executed when they are called (or used) in
a C++ statement. The function getchar() takes no arguments in the parentheses.
But for strcpy(), two strings are provided as arguments or parameters. Without
these arguments this function will not work, because it is defined with two string
(character array) arguments. In the case of sqrt(), it requires a numeric data as
argument and gives a result (of double type) after performing the predefined
operations on the given argument. This result, as mentioned earlier, is called the
return-value of the function. The data type of a function depends on this value. In
other words we can say that the function should return a value which is of the same
data type of the function. So, the data type of a function is also known as the return

type of the function. Note that we use return 0; statement in main() function,
since it is defined with int data type as per the requirement of GCC.

The number and type of arguments depend upon the data required by the function
for processing. Note that a function can return only one value. But some functions
like puts() and gets() do not return any value. The header of such functions
uses void as the return type. A function either returns one value or nothing at all.

3.4.1 Creating user-defined functions

Based on the syntax discussed above, let us create some functions. The following is
a function to display a message.

void saywelcome()

{

cout<<"Welcome to the world of functions";

}

The name of the function is saywelcome(), its data type (return type) is void
and it does not have any argument. The body contains only one statement.

Now, let us define a function to find the sum of two numbers. Four different types
of definitions are given for the same task, but they vary in definition style and hence
the usage of each is different from others.

void sum1()

{

int a, b, s;

cout<<"Enter 2 numbers: ";

cin>>a>>b;

s=a+b;

cout<<"Sum="<<s;

}

int sum2()

{

int a, b, s;

cout<<"Enter 2 numbers: ";

cin>>a>>b;

s=a+b;

return s;

}

Function 1 Function 2

65

3. Functions

Table 3.1 : Analysis of functions

Name Arguments Return value

sum1() No arguments Does not return any value

sum2() No arguments Returns an integer value

sum3() Two integer arguments Does not return any value

sum4() Two integer arguments Returns an integer value

Let us analyse these functions and see how they are different. The task is the same in

all these functions, but they differ in the number of parameters and return type.

Table 3.1 shows that the function defined with a data type other than void should

return a value in accordance with the data type. The return statement is used for

this purpose (Refer to functions 2 and 4). The return statement returns a value to

the calling function and transfers the program control back to the calling function.

So, remember that if a return statement is executed in a function, the remaining

statements within that function will not be executed.

void sum3(int a, int b)

{

int s;

s=a+b;

cout<<"Sum="<<s;

}

int sum4(int a, int b)

{

int s;

s=a+b;

return s;

}

Function 3 Function 4

In most of the functions, return is placed at the end of the function. The functions

defined with void data type may not have a return statement within the body. But

if we use return statement, we cannot provide any value to it.

Now, let us see how these functions are to be called and how they are executed. We

know that no function other than main()is executed automatically. The sub

functions, either predefined or user-defined, will be executed only when they are

called from main() function or other user-defined function. The code segments

within the rectangles of the following program shows the function calls. Here the

main() is the calling function and sum1(), sum2(), sum3(), and sum4()are the

called functions.

66

Computer Applications (Commerce) - XII

int main()

{

int x, y, z=5, result;

cout << "\nCalling the first function\n";

sum1();

cout << "\nCalling the second function\n";

result = sum2();

cout << "Sum given by function 2 is " << result;

cout << "\nEnter values for x and y : ";

cin >> x >> y;

cout << "\nCalling the third function\n";

sum3(x,y);

cout << "\nCalling the fourth function\n";

result = sum4(z,12);

cout << "Sum given by function 4 is " << result;

cout << "\nEnd of main function";

return 0;

}

The output of the program will be as follows:

Calling the first function

Enter 2 numbers: 10 25

Sum=35

Calling the second function

Enter 2 numbers: 5 7

Sum given by function 2 is 12

Enter values for x and y : 8 13

Calling the third function

Sum=21

Calling the fourth function

Sum given by function 4 is 17

End of main function

Function 4 requires two numbers for the task assigned and hence we provide two
arguments. The function performs some calculations and gives a result. As there is
only one result, it can be returned. Comparatively this function is a better option to
find the sum of any two numbers.

Now, let us write a complete C++ program to find the product of two numbers.
We will write the program using a user-defined function. But where do we write the

Input for a and b

of sum2()

Input for x and y of

main()

Input for a and

b of sum1()

67

3. Functions

user-defined function in a C++ program? The following table shows two styles to
place the user-defined function:

When we compile Program 3.6, there will be no error. But if we compile Program
3.7, there will be an error ‘product was not declared in this scope'.
Let us see what this error means.

3.4.2 Prototype of functions

We have seen that a C++ program can contain any number of functions. But it
must have a main() function to begin the execution. We can write the definitions
of functions in any order as we wish. We can define the main() function first and
all other functions after that or vice versa. Program 3.6 contains the main() function
after the user-defined function, but in Program 3.7, the main() is defined before
the user-defined function. When we compile this program, it will give an error -
"product was not declared in this scope". This is because the function
product() is called in the program, before it is defined. During the compilation
of the main() function, when the compiler encounters the function call product(),
it is not aware of such a function. Compiler is unable to check whether there is such
a function, whether its usage is correct or not, and whether it is accessible or not. So

Function before main() Function after main()

Program 3.6 - Product of two numbers - Program 3.7

#include <iostream>

using namespace std;

int product(int a, int b)

{

int p;

p = a * b;

return p;

}

//Definition above main()

int main()

{

int ans, num1,num2;

cout<<"Enter 2 Numbers:";

cin>>num1>>num2;

ans = product(num1,num2);

cout<<"Product = "<<ans;

return 0;

}

#include <iostream>

using namespace std;

int main()

{

int ans, num1,num2;

cout<<"Enter 2 Numbers:";

cin>>num1>>num2;

ans = product(num1,num2);

cout<<"Product = "<<ans;

return 0;

}

//Definition below main()

int product(int a, int b)

{

int p;

p = a * b;

return p;

}

68

Computer Applications (Commerce) - XII

it reports an error. This error can be removed by giving a declaration statement
about the function and this statement is known as prototype. A function prototype

is the declaration of a function by which compiler is provided with the information
about the function such as the name of the function, its return type, the number and
type of arguments, and its accessibility. This information is essential for the compiler
to verify the correctness of the function call in the program. This information is
available in the function header and hence the header alone will be written as a
statement before the function call. The following is the format:

data_type function_name(argument_list);

In the prototype, the argument names need not be specified. Number and type of
arguments must be specified.

So, the error in Program 3.7 can be rectified by inserting the following statement
before the function call in the main() function.

int product(int, int);

Like a variable declaration, a function must be declared before it is used in the
program. If a function is defined before it is used in the program, there is no need
to declare the function separately. The declaration statement may be given outside
the main() function. The position of the prototype differs in the accessibility of
the function. We will discuss this later in this chapter. Wherever be the position of
the function definition, execution of the program begins in main().

3.4.3 Arguments of functions

We have seen that functions have arguments or parameters for getting data for
processing. Let us see the role of arguments in function call. Consider the function
given below:

float SimpleInterest(int P, int N, float R)

{

float amt;

amt = P * N * R / 100;

return amt;

}

This function gives the simple interest of a given principal amount for a given period
at a given rate of interest. The following code segment illustrates different function
calls:

cout << SimpleInterest(1000,3,2);//Function call 1

int x, y; float z=3.5, a;

cin >> x >> y;

a = SimpleInterest(x, y, z); //Function call 2

69

3. Functions

Function call

according to the

formula

When the first statement is executed, the values 1000, 3 and 2 are passed to the
argument list in the function definition. The arguments P, N and R get the values
1000, 3 and 2, respectively. Similarly, when the last statement is executed, the values
of the variables x, y and z are passed to the arguments P, N and R.

The variables x, y and z are called actual (original) arguments or actual parameters
since they are the actual data passed to the function for processing. The variables P,
N and R used in the function header are known as formal arguments or formal
parameters. These arguments are intended to receive data from the calling function.
Arguments or parameters are the means to pass values from the calling function
to the called function. The variables used in the function definition as arguments are
known as formal arguments. The constants, variables or expressions used in the
function call are known as actual (original) arguments. If variables are used in
function prototype, they are known as dummy arguments.

Now, let us write a program that uses a function fact() that returns the factorial
of a given number to find the value of nCr. As we know, factorial of a number N is
the product of the first N natural numbers. The value of nCr is calculated by the

formula
)!(!

!

rnr

n

−
 , where n! denotes the factorial of n.

Program 3.8: To find the value of nCr

#include<iostream>

using namespace std;

int fact(int); //Function prototype

int main()

{

int n,r, ncr;

cout<<"Enter the values of n and r : ";

cin>>n>>r;

ncr=fact(n)/(fact(r)*fact(n-r));

cout<<n<<"C"<<r<<" = "<<ncr;

return 0;

}

int fact(int N) //Function header

{

int f;

for(f=1; N>0; N--)

f=f*N;

return f;

}

Actual

arguments

Formal

argument

Factorial

is returned

70

Computer Applications (Commerce) - XII

The following is a sample output:

Enter the values of n and r : 5 2

5C2 = 10

3.4.4 Functions with default arguments

Let us consider a function TimeSec() with the argument list as follows. This function
accepts three numbers that represent time in hours, minutes and seconds. The
function converts this into seconds.

int TimeSec(int H, int M=0, int S=0)

{

int sec = H * 3600 + M * 60 + S;

return sec;

}

Note that the two arguments M and S are given default value 0. So, this function can
be invoked in the following ways.

long s1 = TimeSec(2,10,40);

long s2 = TimeSec(1,30);

long s3 = TimeSec(3);

It is important to note that all the default arguments must be placed from the right
to the left in the argument list. When a function is called, actual arguments are
passed to the formal arguments from left onwards.

When the first statement is executed, the function is called by passing the values 2,
10 and 40 to the formal parameters H, M and S, respectively. The initial values of M
and S are over-written by the actual arguments. During the function call in the
second statement, H and M get values from actual arguments, but S works with its
default value 0. Similarly, when the third statement is executed, H gets the value
from calling function, but M and S use the default values. So, after the function calls,
the values of s1, s2 and s3 will be 7840, 5400 and 10800, respectively.

We have seen that functions can be defined with arguments assigned with initial
values. The initialized formal arguments are called default arguments which allow
the programmer to call a function with different number of arguments. That is, we

can call the function with or without giving values to the default arguments.

3.4.5 Methods of calling functions

Suppose your teacher asks you to prepare invitation letters for the parents of all
students in your class, requesting them to attend a function in your school. The

teacher can give you a blank format of the invitation letter and also a list containing

User inputs

71

3. Functions

the names of all the parents. The teacher can give you the name list in two ways. She
can take a photo copy of the name list and give it to you. Otherwise, she can give
the original name list itself. What difference would you feel in getting the name list

in these two ways? If the teacher gives the original name list, you will be careful not
to make any marks or writing in the name list because the teacher may want the
same name list for future use. But if you are given a photo copy of the name list,
you can make any marking in the list, because the change will not affect the original
name list.

Let us consider the task of preparing the invitation letter as a function. The name
list is an argument for the function. The argument can be passed to the function in
two ways. One is to pass a copy of the name list and the other is to pass the original
name list. If the original name list is passed, the changes made in the name list, while

preparing the invitation letter, will affect the original name list. Similarly, in C++,
an argument can be passed to a function in two ways. Based on the method of
passing the arguments, the function calling methods can be classified as Call by
Value method and Call by Reference method. The following section describes the
methods of argument passing in detail.

a. Call by value (Pass by value) method

In this method, the value contained in the actual argument is passed to the formal
argument. In other words, a copy of the actual argument is passed to the function.
Hence, if the formal argument is modified within the function, the change is not
reflected in the actual argument at the calling place. In all previous functions, we
passed the argument by value only. See the following example:

void change(int n)

{

n = n + 1;

cout << "n = " << n << '\n';

}

void main()

{

int x = 20;

change(x);

cout << "x = " << x;

}

When we pass an argument as specified in the above program segement, only a
copy of the variable x is passed to the function. In other words, we can say that only
the value of the variable x is passed to the function. Thus the formal parameter n in

The parameter n has its

own memory location to

store the value 20 in

change().

The value of x is

passed to n in

change()

72

Computer Applications (Commerce) - XII

The parameter n is a

reference variable and

hence there is no

exclusive memory

allocation for it

the function will get the value 20. When we increase the value of n, it will not affect
the value of the variable x. The following will be the output of the above code:

n = 21

x = 20

Table 3.2 shows what happens to the arguments when a function is called using call-
by-value method:

Table 3.2: Call by value procedure

main() x

{

.......

.......

}

change(int n)

{

........

}

20

n

main() x

{

.......

.......

}

change(int n)

{

........

}

20

n

20

main() x

{

.......

.......

}

change(int n)

{

........

}

20

n

21

Before function call After function call After function execution

b. Call by reference (Pass by reference) method

When an argument is passed by reference, the reference of the actual argument is
passed to the function. As a result, the memory location allocated to the actual
argument will be shared by the formal argument. So, if the formal argument is
modified within the function, the change will be reflected in the actual argument at
the calling place. In C++, to pass an argument by reference we use reference variable

as formal parameter. A reference variable is an alias name of another variable.
An ampersand symbol (&) is placed in between the data type and the variable in
the function header. Reference variables will not be allocated memory exclusively
like the other variables. Instead, it will share the memory allocated to the actual
arguments. The following function uses reference variable as formal parameter and
hence call by reference method is implemented for function call.

void change(int & n)

{

n = n + 1;

cout << "n = " << n << '\n';

}

73

3. Functions

void main()

{

int x=20;

change(x);

cout << "x = " << x;

}

Note that the only change in the change() function is in the function header. The

& symbol in the declaration of the parameter n means that the argument is a reference

variable and hence the function will be called by passing reference. Hence when the

argument x is passed to the change() function, the variable n gets the address of

x so that the location will be shared. In other words, the variables x and n refer to

the same memory location. We use the name x in the main() function, and the

name n in the change() function to refer the same storage location. So, when we

change the value of n, we are actually changing the value of x. If we run the above

program, we will get the following output:

n = 21

x = 21

Table 3.3 depicts the changes in the arguments when call-by-reference is applied for
the function call.

main() x

{

.......

.......

}

change(int &n)

{

........

}

20

main() x

{

.......

.......

}

change(int &n)

{

........

}

20

main() x

{

.......

.......

}

change(int &n)

{

........

}

21

n

Before function call After function call After function execution

n

Table 3.3: Call by value reference procedure

The reference of x will be

passed to n of the

change() function, which

results into the sharing of

memory.

We have discussed the difference between the two methods of function calling.
Basically the methods differ in the mode of passing arguments. Let us consolidate
the difference between these two methods of function calling. Table 3.4 gives the
clear picture.

74

Computer Applications (Commerce) - XII

Let us discuss a typical example for call by reference method. This program uses a
function that can be called by reference method for exchanging the values of the
two variables in the main() function. The process of exchanging values of two
variables is known as swapping.

Program 3.9: To swap the values of two variables

#include <iostream>

using namespace std;

void swap(int & x, int & y)

{

int t = x;

x = y;

y = t;

}

int main()

{

int m, n;

m = 10;

n = 20;

cout<<"Before swapping m= "<< m <<" and n= "<<n;

swap(m, n);

cout<<"\nAfter swapping m= "<< m <<" and n= "<<n;

return 0;

}

Let us go through the statements in Program 3.9. The actual arguments m and n

are passed to the function by reference. Within the swap() function, the values of

Call by Reference Method

• Reference variables are used as

formal parameters.

• Actual parameters will be variables

only.

• The changes made in the formal

arguments do reflect in actual

arguments.

• Memory of actual arguments is

shared by formal arguments.

Call by Value Method

• Ordinary variables are used as formal

parameters.

• Actual parameters may be constants,

variables or expressions.

• The changes made in the formal

arguments do not reflect in actual

arguments.

• Exclusive memory allocation is

required for the formal arguments.

Table 3.4 : Call by value v/s Call by reference

75

3. Functions

x and y are interchanged. When the values of x and y are changed, actually the
change takes place in m and n. Therefore the output of the above program code is:

Before swapping m= 10 and n= 20

After swapping m= 20 and n= 10

Modify the above program by replacing the formal arguments with ordinary
variables and predict the output. Check your answer by executing the code in the

lab.

Know your progress

1. Identify the most essential function in C++ programs.

2. List the three elements of a function header.

3. What is function prototype?

4. Which component is used for data transfer from calling function
to called function?

5. What are the two parameter passing techniques used in C++?

6. Identify the name of the function call where & symbol is used
along with formal arguments.

3.5 Scope and life of variables and functions

We have discussed C++ programs consisting of more than one function. Predefined

functions are used by including the header file concerned. User-defined functions

are placed before or after the main() function. We have seen the relevance of

function prototypes while defining functions. We have also used variables in the

function body and as arguments. Now, let us discuss the availability or accessibility

of the variables and functions throughout the program. Program 3.10 illustrates
the accessibility of local variables in a program.

Program 3.10: To illustrate the scope and life of variables

#include <iostream>

using namespace std;

int cube(int n)

{

int cb;

cout<< "The value of x passed to n is " << x;

cb = n * n * n;

return cb;

}

This is an error because the

variable x is declared within the

main() function. So it cannot

be used in other functions.

76

Computer Applications (Commerce) - XII

int main()

{

int x, result;

cout << "Enter a number : ";

cin >> x;

result = cube(x);

cout << "Cube = " << result;

cout << "\nCube = "<< cb;

return 0;

}

When we compile the program, there will be two errors because of the reasons

shown in the call-outs. The concept of availability or accessibility of variables and

functions is termed as their scope and life time. Scope of a variable is that part of

the program in which it is used. In the above program, scope of the variable cb is

in the cube() function because it is declared within that function. Hence this

variable cannot be used outside the function. This scope is known as local scope.

On completing the execution of a function, memory allocated for all the variables

within a function is freed. In other words, we can say that the life of a variable,

declared within a function, ends with the execution of the last instruction of the

function. So, if we use a variable n within the main(), that will be different from

the argument n of a called function or a variable n within the called function. The

variables used as formal arguments and/or declared within a function have local

scope.

Just like variables, functions also have scope. A function can be used within the

function where it is declared. That is the function is said to have local scope. If it is

declared before the main() function and not within any other function, the scope

of the function is the entire program. That is the function can be used at any place

in the program. This scope is known as global scope. Variables can also be declared

with global scope. Such declarations will be outside all the functions in the program.

Look at Program 3.11 to get more clarity on the scope and life of variables and

functions throughout the program.

This is an error because

the variable cb is declared within

the cube() function. So it

cannot be used in other functions.

77

3. Functions

Program 3.11 : To illustrate the scope and life of variables and functions

#include <iostream>

using namespace std;

int cb; //global variable

void test()//global function since defined above other functions

{

int cube(int n); //It is a local function

cb=cube(x); //Invalid call. x is local to main()

cout<<cb;

}

int main() // beginning of main() function

{

int x=5; //local variable

test(); //valid call since test() is a global function

cb=cube(x); //Invalid call. cube() is local to test()

cout<<cb;

}

int cube(int n)//Argument n is local variable

{

int val= n*n*n; //val is local variable

return val;

}

The given comments explain the scope and life of functions. A function which is

declared inside the function body of another function is called a local function as

it can be used within that function only. A function declared outside the function

body of any other function is called a global function. A global function can be

used throughout the program. In other words, the scope of a global function is the

entire program and that of a local function is only the function where it is declared.

Table 3.5 summarises the scope and life time of variables and functions.

78

Computer Applications (Commerce) - XII

Table 3.5: Scope and life of variables and functions

Scope & Local Global

life

• Declared within a function or a

block of statements.

• Available only within that

function or block.

• Memory is allocated when the

function or block is active and

freed when the execution of the

function or block is completed.

• Declared within a function or a

block of statements and defined

after the calling function.

• Accessible only within that

function or the block.

Variables

Functions

• Declared outside all the

functions.

• Available to all functions in the

program.

• Memory is allocated just before

the execution of the program

and freed when the program

stops execution.

• Declared or defined outside all

other functions.

• Accessible by all functions in

the program

Let us conclude

Modular programming is an approach to make programming simpler. C++

facilitates modularization with functions. Function is a named unit of program to

perform a specific task. There are two types of functions in C++: predefined

functions and user-defined functions. Predefined functions can be used in a program

only if we include the header file concerned in the program. User-defined functions

may need to be declared if the definition appears after the calling function. During

function call, data may be transferred from calling function to the called function

through arguments. Arguments may be classified as actual arguments and formal

arguments. Either call by value method or call by reference method can be used to

invoke functions.

79

3. Functions

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678Let us assess

1. What is a meant by a function in C++?

2. The built-in function to find the length of a string is _________.

3. Write down the role of header files in C++ programs.

4. When will you use void data type for function definition?

5. Distinguish between actual parameters and formal parameters.

6. Construct the function prototypes for the following functions
a. Total() takes two double arguments and returns a double

b. Math() takes no arguments and has no return value

7. Discuss the scope of global and local variables with examples.

8. Distinguish between Call-by-value method and Call-by-reference method used
for function calls.

9. In C++, function can be invoked without specifying all its arguments. How?

10. How a local function differs from a global function?

11. Identify the built-in functions needed for the following cases

a. To convert the letter 'c' to 'C'
b. To check whether a given character is alphabet or not.
c. To combine strings "comp" and "ter" to make "computer"
d. To find the square root of 25
e. To return the number 10 from -10

Lab activity

1. Define a function to accept a number and return 1 if it is odd, 0 otherwise.
Using this function write a program to display all odd numbers between 10
and 50.

2. Write a program to find the product of three integer numbers using a user
defined function. Invoke the function using call by value and call by reference
methods. Verify the results.

3. Write a program to find the smallest of three or two given numbers using a
function (use the concept of default arguments).

4. With the help of a user-defined function find the sum of digits of a number.
That is if the given number is 345 then the result should be 3+4+5 = 12.

5. Using a function, write a program to find the area of a circle.

6. Write a program to check whether a number is positive, negative or zero. Use
a user defined function for checking.

80

Computer Applications (Commerce) - XII

12. Look at the following functions:

int sum(int a,int b=0,int c=0)

{

return (a + b + c);

}

a. What is the speciality of the function regarding the parameter list?

b. Give the outputs of the following function calls by explaining its working
and give reason if the function call is wrong.

i. cout << sum (1, 2, 3); ii. cout << sum(5, 2);

iii. cout << sum(); iv. cout << sum(0);

13. The prototype of a function is: int fun(int, int);

The following function calls are invalid. Give reason for each.

a. fun("hello",4); b. cout<<fun(); c. val = fun(2.5, 3.3);

d. cin>>fun(a, b); e. z=fun(3);

14. Consider the following program and predict the output if the radius is 5. Also
write the reason for the output.

#include<iostream>

using namespace std;

float area(float &);

int main()

{

float r, ans;

cout<<"Enter radius :";

cin>>r;

ans = area(r);

cout<<area;

cout<<r;

return 0;

}

float area(float &p)

{

float q;

q = 3.14 * p * p;

p++;

return q;

}

15. Modify the program given in question 14 by applying call by value method to
call the function and write the possible difference in the output.

