
• Concept of modular

programming

• Functions in C++

• Predefined functions

o String functions

o Mathematical functions

o Character functions

o Conversion functions

o I/O manipulating

functions

• User-defined functions

o Creating user-defined

functions

o Prototype of functions

o Arguments of functions

o Functions with default

arguments

o Methods of calling

functions

• Scope and life of variables

and functions

• Recursive functions

• Creation of header Files

Key Concepts We discussed some simple programs in the
previous chapters. But to solve complex
problems, larger programs running into
thousands of lines of code are required. As
discussed in Chapter 4, complex problems are
divided into smaller ones and programs to solve
each of these sub problems are written. In other
words, we break the larger programs into
smaller sub programs. In C++, function is a way
to divide large programs into smaller sub
programs. We have already seen functions like
main(), sqrt(), gets(), getchar(), etc.
The functions, except main(), are assigned
specific tasks and readily available for use. So,
these functions are known as built-in functions
or predefined functions. Besides such functions,
we can define functions for a specific task. These
are called user-defined functions. In this chapter
we will discuss more predefined functions and
learn how to define our own functions. Before
going into these, let us familiarise ourselves with
a style of programming called modular
programming.

10.1 Concept of modular
programming

Let us consider the case of a school management
software. It is a very large and complex software
which may contain many programs for different
tasks. The complex task of school management
can be divided into smaller tasks or modules
and developed in parallel, and later integrated
to build the complete software as shown in
Figure 10.1.

10

274

In programming, the entire problem will be divided into small sub problems that
can be solved by writing separate programs. This kind of approach is known as
modular programming. Each sub task will be considered a module and we write
programs for each module. The process of breaking large programs into smaller
sub programs is called modularisation. Computer programming languages have
different methods to implement modularization. The sub programs are generally
called functions. C++ also facilitates modular programming with functions.

Merits of modular programming

The modular style of programming has several advantages. It reduces the complexity
and size of the program, makes the program more readable, improves re-usability
and makes the debugging process easy. Let us discuss these features in detail:

Reduces the size of the program: In some cases, certain instructions in a program
may be repeated at different points of the program. Consider the expression

yx

yx

+

+
75

. To evaluate this expression for the given values of x and y, we have to

use instructions for the following:

1. find the 5th power of x

2. find the 7th power of y

3. add the results obtained in steps 1 and 2

4. find the square root of x

5. find the square root of y

6. add the results obtained in steps 4 and 5

7. divide the result obtained in step 3 by that in step 6

We know that separate loops are needed to find the results of step 1 and 2. Can you
imagine the complexity of the logic to find the square root of a number? It is clear
that the program requires the same instructions to process different data at different

Fig. 10.1: Modular programming style

10. Functions

275

points. The modular approach helps to isolate the repeating task and write
instructions for this. We can assign a name to this set of instructions and this can be
invoked by using that name. Thus program size is reduced.

Less chances of error: When the size of the program is reduced, naturally syntax
errors will be less in number. The chances of logical error will also be minimized.
While solving complex problems we have to consider all the aspects of the problem,
and hence the logic of the solution will also be complex. But in a modularized
program, we need to concentrate only on one module at a time. If any error is
identified in the output, we can identify the module concerned and rectify the error
in that module only.

Reduces programming complexity: The net result of the two advantages
discovered above is reducing programming complexity. If we properly divide the
problem into smaller conceptual units, the development of logic for the solution
will be simpler. Thus modularization reduces the programming complexity by
bringing down our mind to a simplified task at a time, reducing the program size
and making the debugging process easy.

Improves reusability: A function written once may be used later in many other
programs, instead of starting from scratch. This reduces the time taken for program
development.

Demerits of modular programming

Though there are significant merits in modular programming, proper breaking down
of the problem is a challenging task. Each sub problem must be independent of
the others. Utmost care should be taken while setting the hierarchy of the execution

of the modules.

10.2 Functions in C++

Let us consider the case of a coffee making machine and
discuss its functioning based on Figure 10.2. Water, milk,
sugar and coffee powder are supplied to the machine. The
machine processes it according to a set of predefined
instructions stored in it and returns the coffee which is
collected in a cup. The instruction-set may be as follows:

1. Get 60 ml milk, 120 ml water, 5 gm coffee powder and
20 gm sugar from the storage of the machine.

2. Boil the mixture

3. Pass it to the outlet.

Fig. 10.2 : Functioning of
a coffee making machine

276

Usually there will be a button in the machine to invoke this procedure. Let us name
the button with the word “MakeCoffee”. Symbolically we can represent the
invocation as:

Cup = MakeCoffee (Water, Milk, Sugar, Coffee Powder)

We can compare all these aspects with functions in programs. The word
“MakeCoffee” is the name of the function, “Water”, “milk”, “sugar” and “coffee
powder” are parameters for the function and “coffee” is the result returned. It is
stored in a “Cup”. Instead of cup, we can use a glass, tumbler or any other container.

Similarly, a C++ function accepts parameters, processes it and
returns the result. Figure 10.3 can be viewed as a function Add

that accepts 3, 5, 2 and 6 as parameters, adds them and returns
the value which is stored in the variable C. It can be written as:

C = Add (3, 5, 2, 6)

We can say that function is a named unit of statements in a
program to perform a specific task as part of the solution. It is
not necessary that all the functions require some parameters and
all of them return some value. C++ provides a rich collection
of functions ready to use for various tasks. The functions clrscr(), getch(),
sqrt(), etc. are some of them. The tasks to be performed by each of these are
already written, debugged and compiled, their definitions alone are grouped and
stored in files called header files. Such ready-to-use sub programs are called
predefined functions or built-in functions.

While writing large programs, the predefined functions may not suffice to apply
modularization. C++ provides the facility to create our own functions for some
specific tasks. Everything related to a function such as the task to be carried out, the
name and data required are decided by the user and hence they are known as user-

defined functions.

What is the role of main() function then? It may be considered as user-defined in
the sense that the task will be defined by the user. We have learnt that it is an essential
function in a C++ program because the execution of a program begins in main().
Without main(), C++ program will not run. All other functions will be executed

when they are called or invoked (or used) in a statement.

10.3 Predefined functions

C++ provides a number of functions for various tasks. We will discuss only the
most commonly used functions. While using these functions, some of them require
data for performing the task assigned to it. We call them parameters or arguments

Fig. 10.3. Addition
function

C

10. Functions

277

and are provided within the pair of parentheses of the function name. There are
certain functions which give results after performing the task. This result is known
as value returned by the function. Some functions do not return any value, rather
they perform the specified task. In the following sections, we discuss functions for
manipulating strings, performing mathematical operations and processing character
data. While using these functions the concerned header files are to be included in
the program.

10.3.1 String Functions

Several string functions are available in C++ for the manipulation of strings. As
discussed in Chapter 9, C++ does not have a string data type and hence an array of
characters is used to handle strings. So, in the following discussion, wherever the
word string comes, assume that it is a character array. Following are the commonly
used string functions. We should include the header file cstring (string.h in
Turbo C++) in our C++ program to use these functions.

a. strlen()

This function is used to find the length of a string. Length of a string means the
number of characters in the string. Its syntax is:

int strlen(string);

This function takes a string as the argument and gives the length of the string as the
result. The following code segment illustrates this.

char str[] = "Welcome";

int n;

n = strlen(str);

cout << n;

Here, the argument for the strlen() function is a string variable and it returns the
number of characters in the string, i.e. 7 to the variable n. Hence the program code
will display 7 as the value of the variable n. The output will be the same even
though the array declaration is as follows.

char str[10] = "Welcome";

Note that the array size is specified in the declaration. The argument may be a string
constant as shown below:

n = strlen("Computer");

The above statement returns 8 and it will be stored in n.

b. strcpy()

This function is used to copy one string into another. The syntax of the function is:

strcpy(string1, string2);

278

The function will copy string2 to string1. Here string1 and string2 are

array of characters or string constants. These are the arguments for the execution
of the function. The following code illustrates its working:

char s1[10], s2[10] = "Welcome";

strcpy(s1,s2);

cout << s1;

The string "Welcome" contained in the string variable s1 will be displayed on
the screen. The second argument may be a string constant as follows:

strcpy(str,"Welcome");

Here, the string constant "Welcome" will be stored in the variable str. The

assignment statement, str = "Welcome"; is wrong. But we can directly assign

value to a character array at the time of declaration as:

char str[10] = "Welcome";

c. strcat()

This function is used to append one string to another string. The length of the
resultant string is the total length of the two strings. The syntax of the functions is:

strcat(string1, string2);

Here string1 and string2 are array of characters or string constants. string2

is appended to string1. So, the size of the first argument should be able to
accommodate both the strings together. Let us see an example showing the usage
of this function:

char s1[20] = "Welcome", s2[10] = " to C++";

strcat(s1,s2);

cout << s1;

The above program code will display "Welcome to C++" as the value of the
variable s1. Note that the string in s2 begins with a white space.

d. strcmp()

This function is used to compare two strings. In this comparison, the alphabetical
order of characters in the strings is considered. The syntax of the function is:

strcmp(string1, string2)

The function returns any of the following values in three different situations.

• Returns 0 if string1 and string2 are same.

• Returns a –ve value if string1 is alphabetically lower than string2.

• Returns a +ve value if string1 is alphabetically higher than string2.

10. Functions

279

Header file essential

for using string

manipulating functions

The following code fragment shows the working of this function.

char s1[]="Deepthi", s2[]="Divya";

int n;

n = strcmp(s1,s2);

if(n==0)

cout<<"Both the strings are same";

else if(n < 0)

cout<<"s1 < s2";

else

cout<<"s1 > s2";

It is clear that the above program code will display "s1 < s2" as the output.

e. strcmpi()

This function is used to compare two strings ignoring cases. That is, the function
will treat both the upper case and lower case letters as the same for comparison.
The syntax and working of the function are the same as that of strcmp() except
that strcmpi() is not case sensitive. This function also returns values as in the
case of strcmp(). Consider the following code segment:

char s1[]="SANIL", s2[]="sanil";

int n;

n = strcmpi(s1,s2);

if(n==0)

cout<<"strings are same";

else if(n < 0)

cout<<"s1 < s2";

else

cout<<"s1 > s2";

The above program code will display "strings are same" as the output because
the uppercase and lowercase letters will be treated as the same during the comparison.

Program 10.1 compares and concatenates two strings. The length of the newly
formed string is also displayed.

Program 10.1: To combine two strings if they are different and find its length

#include <iostream>

#include <cstring>

using namespace std;

int main()

{

char s1[20], s2[20], s3[20];

cout<<"Enter two strings: ";

280

cin>>s1>>s2;

int n=strcmp(s1, s2);

if (n==0)

cout<<"\nThe input strings are same";

else

{

cout<<"\nThe input strings are not same";

strcpy(s3, s1);//Copies the string in s1 into s3

strcat(s3, s2); //Appends the string in s2 to that in s3

cout<<"\nString after concatenation is: "<<s3;

cout<<"\nLength of the new string is: "<<strlen(s3);

}

return 0;

}

10.3.2 Mathematical functions

Now, let us discuss the commonly used mathematical functions available in C++.
We should include the header file cmath (math.h in Turbo C++) to use these
functions in the program.

a. abs()

It is used to find the absolute value of an integer. It takes an integer as the argument

(+ve or –ve) and returns the absolute value. Its syntax is:

int abs(int)

The following is an example to show the output of this function:

int n = -25;

cout << abs(n);

The above program code will display 25. If we want to find the absolute value of a

floating point number, we can use fabs() function as used above. It will return the

floating point value.

b. sqrt()

It is used to find the square root of a number. The argument to this function can be

of type int, float or double. The function returns the non-negative square

root of the argument. Its syntax is:

double sqrt(double)

The following code snippet is an example. This code will display 5.

int n = 25;

float b = sqrt(n);

cout << b;

10. Functions

281

c. pow()

This function is used to find the power of a number. It takes two arguments x and
y. The argument x and y are of type int, float or double. The function
returns the value of xy. Its syntax is:

double pow(double, int)

The following example shows the working of this function.

int x = 5, y = 4, z;

z = pow(x, y);

cout << z;

The above program code will display 625.

d. sin()

It is a trigonometric function and it finds the sine value of an angle. The argument
to this function is double type data and it returns the sine value of the argument.
The angle must be given in radian measure. Its syntax is:

double sin(double)

The sine value of ∠30° (angle 30 degree) can be found out by the following code.

float x = 30*3.14/180; //To convert angle into radians

cout << sin(x);

The above program code will display 0.4999770

e. cos()

The function is used to find the cosine value of an angle. The argument to this
function is double type data and it returns the cosine value of the argument. In
this case also, the angle must be given in radian measure. The syntax is:

double cos(double)

The cosine value of ∠30° (angle 30 degree) can be found out by the following code.

double x = cos(30*3.14/180);

cout << x;

Note that the argument provided is an expression that converts angle in degree
into radians. The above code will display 0.866158.

Program 10.2 uses different mathematical functions to find the length of the sides

of a right angled triangle, if an angle and length of one side is given. We use the

following formula for solving this problem.

Sin θ = , Cos θ = , Tan θ =

(Hypotenuse)2 = (Base)2 + (Altitude)2

Opposite side

Hypotenuse

Adjacent side

Hypotenuse

Opposite side

Adjacent side

282

Program 10.2: To find the length of the sides of a right angled triangle

using mathematical functions

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

const float pi=22.0/7;

int angle, side;

float radians, length, opp_side, adj_side, hyp;

cout<<"Enter the angle in degree: ";

cin>>angle;

radians=angle*pi/180;

cout <<"\n1. Opposite Side"

 <<"\n2. Adjacent Side"

 <<"\n3. Hypotenuse";

cout <<"\nInput 1, 2 or 3 to specify the side: ";

cin>>side;

cout<<"Enter the length: ";

cin>>length;

switch(side)

{

case 1: opp_side=length;

adj_side=opp_side / tan(radians);

hyp= sqrt(pow(opp_side,2) + pow(adj_side,2));

break;

case 2: adj_side=length;

hyp=adj_side / cos(radians);

opp_side=sqrt(pow(hyp,2) - pow(adj_side,2));

break;

case 3: hyp=length;

opp_side=hyp * sin(radians);

adj_side=sqrt(pow(hyp,2) - pow(opp_side,2));

}

cout<<"Angle in degree = "<<angle;

cout<<"\nOpposite Side = "<<opp_side;

cout<<"\nAdjacent Side = "<<adj_side;

cout<<"\nHypotenuse = "<<hyp;

return 0;

}

Conversion

of angle in degree

into radians

Header file essential

for using mathematical

functions

10. Functions

283

The following is a sample output of the above program:

Enter the angle in degree: 30

1. Opposite Side

2. Adjacent Side

3. Hypotenuse

Input 1, 2 or 3 to specify the side: 1

Enter the length: 6

Angle in degree = 30

Opposite Side = 6

Adjacent Side = 10.38725

Hypotenuse = 11.995623

10.3.3 Character functions

These functions are used to perform various operations of characters. The following

are the various character functions available in C++. The header file cctype

(ctype.h for Turbo C++) is to be included to use these functions in a program.

a. isupper()

This function is used to check whether a character is in the upper case or not. The

syntax of the function is:

int isupper(char c)

The function returns 1 if the given character is in the uppercase, and 0 otherwise.

The following statement assigns 0 to the variable n.

int n = isupper('x');

Consider the following statements:

char c = 'A';

int n = isupper(c);

The value of the variable n, after the execution of the above statements will be 1,

since the given character is in upper case.

b. islower()

This function is used to check whether a character is in the lower case or not. The

syntax of the function is:

int islower(char c)

The function returns 1 if the given character is in the lower case, and 0 otherwise.

284

After executing the following statements, the value of the variable n will be 1 since
the given character is in the lower case.

char ch = 'x';

int n = islower(ch);

But the statement given below assigns 0 to the variable n, since the given character
is in the uppercase.

int n = islower('A');

c. isalpha()

This function is used to check whether the given character is an alphabet or not.
The syntax of the function is:

int isalpha(char c)

The function returns 1 if the given character is an alphabet, and 0 otherwise.

The following statement assigns 0 to the variable n, since the given character is not
an alphabet.

int n = isalpha('3');

But the statement given below displays 1, since the given character is an alphabet.

cout << isalpha('a');

d. isdigit()

This function is used to check whether the given character is a digit or not. The
syntax of the function is:

int isdigit(char c)

The function returns 1 if the given character is a digit, and 0 otherwise.

After executing the following statement, the value of the variable n will be 1 since
the given character is a digit.

n = isdigit('3');

When the following statements are executed, the value of the variable n will be 0,
since the given character is not a digit.

char c = 'b';

int n = isdigit(c);

e. isalnum()

This function is used to check whether a character is an alphanumeric or not. The
syntax of the function is:

int isalnum (char c)

10. Functions

285

The function returns 1 if the given character is an alphanumeric, and 0 otherwise.

Each of the following statements returns 1 after the execution.

n = isalnum('3');

cout << isalnum('A');

But the statements given below assigns 0 to the variable n, since the given character
is neither an alphabet nor a digit.

char c = '-';

int n = isalnum(c);

f. toupper()

This function is used to convert the given character into its uppercase. The syntax
of the function is:

char toupper(char c)

The function returns the upper case of the given character. If the given character is
in the upper case, the output will be the same.

The following statement assigns the character constant 'A' to the variable c.

char c = toupper('a');

But the output of the statement given below will be 'A' itself.

cout << (char)toupper('A');

Note that type conversion using (char) is used in this statement. If conversion
method is not used, the output will be 65, which is the ASCII code of 'A'.

g. tolower()

This function is used to convert the given character into its lower case. The syntax
of the function is:

char tolower(char c)

The function returns the lower case of the given character. If the given character is
in the lowercase, the output will be the same.

Consider the statement: c = tolower('A');

After executing the above statement, the value of the variable c will be 'a'. But
when the following statements are executed, the value of the variable c will be 'a'.

char x = ‘a’;

char c = tolower(x) ;

In the case of functions tolower() and toupper(), if the argument is other

than an alphabet, the given character itself will be returned on execution.

286

Program 10.3 illustrates the use of character functions. This program accepts a line
of text and counts the lowercase letters, uppercase letters and digits in the string. It
also displays the entire string both in the upper and lower cases.

Program 10.3: To count different types of characters in the given string

#include <iostream>

#include <cstdio>

#include <cctype>

using namespace std;

int main()

{

char text[80];

int Ucase=0, Lcase=0, Digit=0, i;

cout << "Enter a line of text: ";

gets(text);

for(i=0; text[i]!='\0'; i++)

if (isupper(text[i])) Ucase++;

else if (islower(text[i])) Lcase++;

else if (isdigit(text[i])) Digit++;

cout << "\nNo. of uppercase letters = " << Ucase;

cout << "\nNo. of lowercase letters = " << Lcase;

cout << "\nNo. of digits = " << Digit;

cout << "\nThe string in uppercase form is\n";

i=0;

while (text[i]!='\0')

{

putchar(toupper(text[i]));

i++;

}

cout << "\nThe string in lowercase form is\n";

i=0;

do

{

putchar(tolower(text[i]));

i++;

} while(text[i]!='\0');

return 0;

}

Loop will be

terminated when the

value of i points to the

null character is

reached

If cout<< is used

 instead of putchar(),

the ASCII code of the

characters will be

displayed

10. Functions

287

A sample output is given below:

Enter a line of text : The vehicle ID is KL01 AB101

No. of uppercase letters = 7

No. of lowercase letters = 11

No. of digits = 5

The string in uppercase form is

THE VEHICLE ID IS KL01 AB101

The string in lowercase form is

the vehicle id is kl01 ab101

10.3.4 Conversion functions

These functions are used to convert a string to integer and an integer to string.
Following are the different conversion functions available in C++. The header file
cstdlib (stdlib.h in Turbo C++) is to be included to use these functions in a program.

a. itoa()

This function is used to convert an integer value to string type. The syntax of the
function is:

itoa(int n, char c[], int len)

From the syntax, we can see that the function requires three arguments. The first
one is the number to be converted. The second argument is the character array
where the converted string value is to be stored and the last argument is the size of
the character array. The following code segment illustrates this function:

int n = 2345;

char c[10];

itoa(n, c, 10);

cout << c;

The above program code will display "2345" on the screen.

b. atoi()

This function is used to convert a string value to integer. The syntax of the function
is:

int atoi(char c[]);

The function takes a string as argument returns the integer value of the string. The
following code converts the string "2345" into integer number 2345.

int n;

char c[10] = "2345";

n = atoi(c);

cout << n;

The input by

the user

288

If the string consists of characters other than digits, the output will be 0. But if the
string begins with digits, only that part will be converted into integer. Some usages
of this function and their outputs are given below:

(i) atoi("Computer") returns 0

(ii) atoi("12.56") returns 12

(iii) atoi("a2b") returns 0

(iv) atoi("2ab") returns 2

(v) atoi(".25") returns 0

(vi) atoi("5+3") returns 5

Program 10.4 illustrates the use of these functions in problem solving. It accepts
the three parts (day, month and year) of a date of birth and displays it in date
format.

 Program 10.4: To display date of birth in date format

#include <iostream>

#include <cstring>

#include <cstdlib>

using namespace std;

int main()

{

char dd[10], mm[10], yy[10], dob[30];

int d, m, y;

cout<<"Enter day, month and year in your Date of Birth: ";

cin>>d>>m>>y;

itoa(d, dd, 10);

itoa(m, mm, 10);

itoa(y, yy, 10);

strcpy(dob, dd);

strcat(dob, "-");

strcat(dob, mm);

strcat(dob, "-");

strcat(dob, yy);

cout<<"Your Date of Birth is "<<dob;

return 0;

}

A sample output of Program10.4 is given below:

Enter day, month and year in your Date of Birth: 26 11 1999

Your Date of Birth is 26-11-1999

10. Functions

289

10.3.5 I/O Manipulating function

These functions are used to manipulate the input and output operations in C++.
The header file ciomanip is to be included to use these functions in a program.

setw()

This function is used to set the width for the subsequent string. The following code
shows its impact in the output:

char s[]="hello";

cout<<setw(10)<<s<<setw(10)<<"friends";

The output of the above code will be as follows:

 hello friends

The word hello will be displayed right aligned within a span of 10 character
positions. Similarly, the word friends will also be displayed right aligned within
a span of 10 character positions.

Prepare a chart in the following format and fill up the columns with

all predefined functions we have discussed so far.

Function Usage Syntax Example Output
Let us do

1. What is modular programming?

2. What is a function in C++?

3. Name the header file required for using character functions.

4. Name the function that displays the subsequent data in the specified width.

5. Pick the odd one out and give reason:

(a) strlen() (b) itoa() (c) strcpy() (d) strcat()

Check yourself

10.4 User-defined functions

All the programs that we have discussed so far contain a function named main().
We know that the first line is a pre-processor directive statement. The remaining
part is actually the definition of a function. The void main() in the programs
is called function header (or function heading) of the function and the statements
within the pair of braces immediately after the header is called its body.

290

The syntax of a function definition is given below:

data_type function_name(argument_list)

{

statements in the body;

}

The data_type is any valid data type of C++. The function_name is a user-
defined word (identifier). The argument_list, which is optional, is a list of
parameters, i.e. a list of variables preceded by data types and separated by commas.
The body comprises C++ statements required to perform the task assigned to the
function. Once we have decided to create a function, we have to answer certain
questions.

(i) Which data type will be used in the function header?

(ii) How many arguments are required and what should be the preceding data
type of each?

Let us recollect how we have used the predefined functions getchar(), strcpy()
and sqrt(). We have seen that these functions will be executed when they are
called (or used) in a C++ statement. The function getchar() does not take any
argument. But for strcpy(), two strings are provided as arguments or parameters.
Without these arguments this function will not work, because it is defined with two
string (character array) arguments. In the case of sqrt(), it requires a numeric
data as argument and gives a result (of double type) after performing the predefined
operations on the given argument. This result, as mentioned earlier, is called the
return-value of the function. The data type of a function depends on this value. In
other words, we can say that the function should return a value which is of the same
data type of the function. So, the data type of a function is also known as the return
type of the function. Note that we use return 0; statement in main() function,
since it is defined with int data type as per the requirement of GCC.

The number and type of arguments depend upon the data required by the function
for processing. But some functions like setw() and gets() do not return any
value. The header of such functions uses void as the return type. A function either
returns one value or nothing at all.

10.4.1 Creating user-defined functions

Based on the syntax discussed above, let us create some functions. The following is
a function to display a message.

void saywelcome()

{

cout<<"Welcome to the world of functions";

}

10. Functions

291

The name of the function is saywelcome(), its data type (return type) is void
and it does not have any argument. The body contains only one statement.

Now, let us define a function to find the sum of two numbers. Four different types
of definitions are given for the same task, but they vary in definition style and hence
the usage of each is different from others.

Table 10.1 : Analysis of functions

Name Arguments Return value

sum1() No arguments Does not return any value

sum2() No arguments Returns an integer value

sum3() Two integer arguments Does not return any value

sum4() Two integer arguments Returns an integer value

Let us analyse these functions and see how they are different. The task is the same in
all these functions, but they differ in the number of parameters and return type.

Table 10.1 shows that the function defined with a data type other than void should
return a value in accordance with the data type. The return statement is used for
this purpose (Refer functions 2 and 4). The return statement returns a value to
the calling function and transfers the program control back to the calling function.
So, remember that if a return statement is executed in a function, the remaining
statements within that function will not be executed. In most of the functions,

void sum1()

{

int a, b, s;

cout<<"Enter 2 numbers: ";

cin>>a>>b;

s=a+b;

cout<<"Sum="<<s;

}

int sum2()

{

int a, b, s;

cout<<"Enter 2 numbers: ";

cin>>a>>b;

s=a+b;

return s;

}

Function 1 Function 2

void sum3(int a, int b)

{

int s;

s=a+b;

cout<<"Sum="<<s;

}

int sum4(int a, int b)

{

int s;

s=a+b;

return s;

}

Function 3 Function 4

292

return is placed at the end of the function. The functions defined with void data
type may have a return statement within the body, but we cannot provide any
value to it. The return type of main() function is either void or int.

Now, let us see how these functions are to be called and how they are executed. We
know that no function other than main()is executed automatically. The sub
functions, either predefined or user-defined, will be executed only when they are
called from main() function or other user-defined function. The code segments
within the rectangles of the following program shows the function calls. Here the
main() is the calling function and sum1(), sum2(), sum3(), and sum4()are the
called functions.

int main()

{

int x, y, z=5, result;

cout << "\nCalling the first function\n";

sum1();

cout << "\nCalling the second function\n";

result = sum2();

cout << "Sum given by function 2 is " << result;

cout << "\nEnter values for x and y : ";

cin >> x >> y;

cout << "\nCalling the third function\n";

sum3(x,y);

cout << "\nCalling the fourth function\n";

result = sum4(z,12);

cout << "Sum given by function 4 is " << result;

cout << "\nEnd of main function"

}

The output of the program is as follows:

Calling the first function

Enter 2 numbers: 10 25

Sum=35

Calling the second function

Enter 2 numbers: 5 7

Sum given by function 2 is 12

Enter values for x and y : 8 13

Calling the third function

Sum=21

Calling the fourth function

Sum given by function 4 is 17

End of main function

Input for a and b

of sum1()

Input for a and b

of sum2()

Input for x and y

of main()

10. Functions

293

Function before main() Function after main()

#include <iostream>

using namespace std;

int sumfact(int N)

{ int i, s = 0;

for(i=1; i<=N/2; i++)

 if (N%i == 0)

 s = s + i;

return s;

}

//Definition above main()

int main()

{

 int num;

cout<<"Enter the Number: ";

cin>>num;

if (num==sumfact(num))

 cout<<"Perfect number";

else

 cout<<"Not Perfect";

return 0;

}

#include <iostream>

using namespace std;

int main()

{

int num;

cout<<"Enter the Number: ";

cin>>num;

if (num==sumfact(num))

 cout<<"Perfect number";

else

 cout<<"Not Perfect";

return 0;

}

//Definition below main()

int sumfact(int N)

{ int i, s = 0;

for(i=1; i<=N/2; i++)

 if (N%i == 0)

 s = s + i;

return s;

}

Program 10.5 - Perfect number checking - Program 10.6

Function 4 requires two numbers for the task assigned and hence we provide two

arguments. The function performs some calculations and gives a result. As there is

only one result, it can be returned. Comparatively this function is a better option to

find the sum of any two numbers.

Now, let us write a complete C++ program to check whether a given number is

perfect or not. A number is said to be perfect if it is equal to the sum of its factors

other than the number itself. For example, 28 is a perfect number, because the

factors other than 28 are 1, 2, 4, 7 and 14. Sum of these factors is 28. For solving

this problem, let us define a function that accepts a number as argument and returns

the sum of its factors. Using this function, we will write the program. But where do

we write the user-defined function in a C++ program? The following table shows

two styles to place the user-defined function:

When we compile Program 10.5, there will be no error and we will get the following
output on execution:

 Enter the Number: 28
 Perfect number

294

If we compile Program 10.6, there will be an error 'sumfact was not declared

in this scope'. Let us see what this error means.

10.4.2 Prototype of functions

We have seen that a C++ program can contain any number of functions. But it

must have a main() function to begin the execution. We can write the definitions

of functions in any order as we wish. We can define the main() function first and

all other functions after that or vice versa. Program 10.5 contains the main()

function after the user-defined function, but in Program 10.6, the main() is defined

before the user-defined function. When we compile this program, it will give an

error - "sumfact was not declared in this scope". This is because the

function sumfact() is called in the program, before it is defined. During the

compilation of the main() function, when the compiler encounters the function

call sumfact(), it is not aware of such a function. Compiler is unable to check

whether there is such a function and whether its usage is correct or not. So it reports

an error arising out of the absence of the function prototype. A function prototype

is the declaration of a function by which compiler is provided with the information

about the function such as the name of the function, its return type, the number and

type of arguments, and its accessibility. This information is essential for the compiler

to verify the correctness of the function call in the program. This information is

available in the function header and hence the header alone will be written as a

statement before the function call. The following is the format:

data_type function_name(argument_list);

In the prototype, the argument names need not be specified.

So, the error in Program 10.6 can be rectified by inserting the following statement

before the function call in the main() function.

int sumfact(int);

Like a variable declaration, a function must be declared before it is used in the

program. If a function is defined before it is used in the program, there is no need

to declare the function separately. The declaration statement may be given outside

the main() function. The position of the prototype differs in the accessibility of

the function. We will discuss this later in this chapter. Wherever be the position of

the function definition, execution of the program begins in main().

10. Functions

295

10.4.3 Arguments of functions

We have seen that functions have arguments or parameters for getting data for

processing. Let us see the role of arguments in function call.

Consider the function given below:

float SimpleInterest(long P, int N, float R)

{

float amt;

amt = P * N * R / 100;

return amt;

}

This function gives the simple interest of a given principal amount for a given period

at a given rate of interest.

The following code segment illustrates different function calls:

cout << SimpleInterest(1000,3,2);//Function call 1

int x, y; float z=3.5, a;

cin >> x >> y;

a = SimpleInterest(x, y, z); //Function call 2

When the first statement is executed, the values 1000, 3 and 2 are passed to the

argument list in the function definition. The arguments P, N and R get the values

1000, 3 and 2 respectively. Similarly, when the last statement is executed, the values

of the variables x, y and z are passed to the arguments P, N and R.

The variables x, y and z are called actual (original) arguments or actual parameters

since they are the actual data passed to the function for processing. The variables

P, N and R used in the function header are known as formal arguments or formal

parameters. These arguments are intended to receive data from the calling function.

Arguments or parameters are the means to pass values from the calling function

to the called function. The variables used in the function definition as arguments are

known as formal arguments. The constants, variables or expressions used in the

function call are known as actual (original) arguments. If variables are used in

function prototype, they are known as dummy arguments.

Now, let us write a program that uses a function fact() that returns the factorial

of a given number to find the value of nCr. As we know, factorial of a number N is

the product of the first N natural numbers. The value of nCr is calculated by the

 formula where n! denotes the factorial of n.
n!

r!(n - r)!

296

Program 10.7: To find the value of nCr

#include<iostream>

using namespace std;

int fact(int);

int main()

{

int n,r;

int ncr;

cout<<"Enter the values of n and r : ";

cin>>n>>r;

ncr=fact(n)/(fact(r)*fact(n-r));

cout<<n<<"C"<<r<<" = "<<ncr;

return 0;

}

int fact(int N)

{

int f;

for(f=1; N>0; N--)

f=f*N;

return f;

}

The following is a sample output:
Enter the values of n and r : 5 2

5C2 = 10

10.4.4 Functions with default arguments

Let us consider a function TimeSec() with the argument list as follows. This function
accepts three numbers that represent time in hours, minutes and seconds. The
function converts this into seconds.

long TimeSec(int H, int M=0, int S=0)

{

long sec = H * 3600 + M * 60 + S;

return sec;

}

Note that the two arguments M and S are given default value 0. So, this function can
be invoked in the following ways.

long s1 = TimeSec(2,10,40);

long s2 = TimeSec(1,30);

long s3 = TimeSec(3);

Function call

according to the

formula

Actual

argumentsFormal

argument

Function

header

Function

prototype

Factorial

is returned

User inputs

10. Functions

297

It is important to note that all the default arguments must be placed from the right

to the left in the argument list. When a function is called, actual arguments are

passed to the formal arguments from left onwards.

When the first statement is executed, the function is called by passing the values 2,

10 and 40 to the formal parameters H, M and S respectively. The initial values of M

and S are over-written by the actual arguments. During the function call in the

second statement, H and M get values from actual arguments, but S works with its

default value 0. Similarly, when the third statement is executed, H gets the value

from calling function, but M and S use the default values. So, after the function calls,

the values of s1, s2 and s3 will be 7840, 5400 and 10800 respectively.

We have seen that functions can be defined with arguments assigned with initial

values. The initialized formal arguments are called default arguments which allow

the programmer to call a function with different number of arguments. That is, we

can call the function with or without giving values to the default arguments.

10.4.5 Methods of calling functions

Suppose your teacher asks you to prepare invitation letters for the parents of all

students in your class, requesting them to attend a function in your school. The

teacher can give you a blank format of the invitation letter and also a list containing

the names of all the parents. The teacher can give you the list of names in two ways.

She can take a photocopy of the list and give it to you. Otherwise, she can give the

original list itself. What difference would you feel in getting the name list in these

two ways? If the teacher gives the original name list, you will be careful not to mark

or write anything in the name list because the teacher may want the same name list

for future use. But if you are given a photocopy of the list, you can mark or write in

the list, because the change will not affect the original name list.

Let us consider the task of preparing the invitation letter as a function. The name

list is an argument for the function. The argument can be passed to the function in

two ways. One is to pass a copy of the name list and the other is to pass the original

name list. If the original name list is passed, the changes made in the name list, while

preparing the invitation letter, will affect the original name list. Similarly, in C++,

an argument can be passed to a function in two ways. Based on the method of

passing the arguments, the function calling methods can be classified as Call by

Value method and Call by Reference method. The following section describes the

methods of argument passing in detail.

298

a. Call by value (Pass by value) method

In this method, the value contained in the actual argument is passed to the formal
argument. In other words, a copy of the actual argument is passed to the function.
Hence, if the formal argument is modified within the function, the change is not
reflected in the actual argument at the calling place. In all previous functions, we
passed the argument by value only. See the following example:

void change(int n)

{

n = n + 1;

cout << "n = " << n << '\n';

}

int main()

{

int x = 20;

change(x);

cout << "x = " << x;

}

When we pass an argument as specified in the above program segement, only a
copy of the variable x is passed to the function. In other words, we can say that only
the value of the variable x is passed to the function. Thus the formal parameter n in
the function will get the value 20. When we increase the value of n, it will not affect
the value of the variable x. The following will be the output of the above code:

n = 21

x = 20

Table 10.2 shows what happens to the arguments when a function is called using
call-by-value method:

The parameter n has its

own memory location to

store the value 20 in

change().

The value of x is

passed to n in

change()

main() x

{

.......

.......

}

change(int n)

{

........

}

20

n

main() x

{

.......

.......

}

change(int n)

{

........

}

20

n

20

main() x

{

.......

.......

}

change(int n)

{

........

}

20

n

21

Before function call After function call After function execution

Table 10.2: Call by value procedure

10. Functions

299

b. Call by reference (Pass by reference) method

When an argument is passed by reference, the reference of the actual argument is
passed to the function. As a result, the memory location allocated to the actual
argument will be shared by the formal argument. So, if the formal argument is
modified within the function, the change will be reflected in the actual argument at
the calling place. In C++, to pass an argument by reference we use reference variable
as formal parameter. A reference variable is an alias name of another variable.
An ampersand symbol (&) is placed in between the data type and the variable in
the function header. Reference variables will not be allocated memory exclusively
like the other variables. Instead, it will share the memory allocated to the actual
arguments. The following function uses reference variable as formal parameter and
hence call by reference method is implemented for function call.

void change(int & n)

{

n = n + 1;

cout << "n = " << n << '\n';

}

int main()

{

int x=20;

change(x);

cout << "x = " << x;

}

Note that the only change in the change() function is in the function header. The

& symbol in the declaration of the parameter n means that the argument is a reference

variable and hence the function will be called by passing reference. Hence when the

argument x is passed to the change() function, the variable n gets the address of

x so that the location will be shared. In other words, the variables x and n refer to

the same memory location. We use the name x in the main() function, and the

name n in the change() function to refer the same storage location. So, when we

change the value of n, we are actually changing the value of x. If we run the above

program, we will get the following output:

n = 21

x = 21

Table 10.3 depicts the changes in the arguments when call-by-reference is applied
for the function call.

The parameter n is a

reference variable and hence

there is no exclusive memory

allocation for it

The reference of x will be

passed to n of the change()

function, which results into

the sharing of memory.

300

These two methods of function call differ as shown in Table 10.4.

Table 10.4 : Call by value v/s Call by reference

Let us discuss a typical example for call by reference method. This program uses a
function that can be called by reference method for exchanging the values of the
two variables in the main() function. The process of exchanging values of two
variables is known as swapping.

Program 10.8: To swap the values of two variables

#include <iostream>

using namespace std;

void swap(int & x, int & y)

{

int t = x;

x = y;

y = t;

}

Call by Reference Method

• Reference variables are used as

formal parameters.

• Actual parameters will be variables

only.

• The changes made in the formal

arguments are reflected in actual

arguments.

• Memory of actual arguments is

shared by formal arguments.

Call by Value Method

• Ordinary variables are used as formal

parameters.

• Actual parameters may be constants,

variables or expressions.

• The changes made in the formal

arguments are not reflected in actual

arguments.

• Exclusive memory allocation is

required for the formal arguments.

main() x

{

.......

.......

}

change(int &n)
{

........

}

20

main() x

{

.......

.......

}

change(int &n)
{

........

}

20
n

main() x

{

.......

.......

}

change(int &n)
{

........

}

21
n

Before function call After function call After function execution

Table 10.3: Call by reference procedure

10. Functions

301

int main()

{

int m, n;

m = 10;

n = 20;

cout<<"Before swapping m= "<< m <<" and n= "<<n;

swap(m, n);

cout<<"\nAfter swapping m= "<< m <<" and n= "<<n;

return 0;

}

Let us go through the statements in Program 10.8. The actual arguments m and n
are passed to the function by reference. Within the swap() function, the values of
x and y are interchanged. When the values of x and y are changed, actually the
change takes place in m and n. Therefore the output of the above program code is:

Before swapping m= 10 and n= 20

After swapping m= 20 and n= 10

Modify the above program by replacing the formal arguments with ordinary
variables and predict the output. Check your answer by executing the code in the
lab.

1. Identify the most essential function in C++ programs.

2. List the three elements of a function header.

3. What is function prototype?

4. Which component is used for data transfer from calling function to

called function?

5. What are the two parameter passing techniques used in C++?

Check yourself

10.5 Scope and life of variables and functions

We have discussed C++ programs consisting of more than one function. Predefined

functions are used by including the header file concerned. User-defined functions

are placed before or after the main() function. We have seen the relevance of

function prototypes while defining functions. We have also used variables in the

function body and as arguments. Now, let us discuss the availability or accessibility

of the variables and functions throughout the program. Program 10.9 illustrates
the accessibility of local variables in a program.

302

Program 10.9: To illustrate the scope and life of variables

#include <iostream>

using namespace std;

int cube(int n)

{

int cb;

cout<< "The value of x passed to n is " << x;

cb = n * n * n;

return cb;

}

int main()

{

int x, result;

cout << "Enter a number : ";

cin >> x;

result = cube(x);

cout << "Cube = " << result;

cout << "\nCube = "<<cb;

}

When we compile the program, there will be two errors because of the reasons
shown in the call-outs. The concept of availability or accessibility of variables and
functions is termed as their scope and life time. Scope of a variable is that part of
the program in which it is used. In the above program, scope of the variable cb is
in the cube() function because it is declared within that function. Hence this
variable cannot be used outside the function. This scope is known as local scope.
On completing the execution of a function, memory allocated for all the variables
within a function is freed. In other words, we can say that the life of a variable,
declared within a function, ends with the execution of the last instruction of the
function. So, if we use a variable n within the main(), that will be different from
the argument n of a called function or a variable n within the called function. The
variables used as formal arguments and/or declared within a function have local
scope.

Just like variables, functions also have scope. A function can be used within the
function where it is declared. That is the function is said to have local scope. If it is
declared before the main() function and not within any other function, the scope
of the function is the entire program. That is the function can be used at any place
in the program. This scope is known as global scope. Variables can also be declared
with global scope. Such declarations will be outside all the functions in the program.

Look at Program 10.10 to get more clarity on the scope and life of variables and
functions throughout the program.

This is an error because

the variable cb is declared

within the cube() function.

So it cannot be used in other

functions.

This is an error because the

variable x is declared within the

main() function. So it cannot

be used in other functions.

10. Functions

303

Program 10.10 : To illustrate the scope and life of variables and functions

#include <iostream>

using namespace std;

int cb; //global variable

void test()//global function since defined above other functions

{

int cube(int n); //It is a local function

cb=cube(x); //Invalid call. x is local to main()

cout<<cb;

}

int main() // beginning of main() function

{

int x=5; //local variable

test(); //valid call since test() is a global function

cb=cube(x); //Invalid call. cube() is local to test()

cout<<cb;

}

int cube(int n)//Argument n is local variable

{

int val= n*n*n; //val is local variable

return val;

}

Variables

Functions

• Declared within a function or a

block of statements.

• Available only within that

function or block.

• Memory is allocated when the

function or block is active and

freed when the execution of the

function or block is completed.

• Declared within a function or a

block of statements and defined

after the calling function.

• Accessible only within that

function or the block.

• Declared outside all the

functions.

• Available to all the functions of

the program.

• Memory is allocated just before

the execution of the program and

freed when the program stops

execution.

• Declared or defined outside all

other functions.

• Accessible by all the functions

in the program

Table 10.5 : Scope and life of variables and functions

Scope &

life

Local Global

304

The given call-outs explain the scope and life of functions. A function which is
declared inside the function body of another function is called a local function as
it can be used within that function only. A function declared outside the function
body of any other function is called a global function. A global function can be
used throughout the program. In other words, the scope of a global function is the
entire program and that of a local function is only the function where it is declared.
Table 10.5 summarises the scope and life time of variables and functions.

10.6 Recursive functions

Usually a function is called by another function. Now let us define a function that
calls itself. The process of calling a function by itself is known as recursion and the
function is known as recursive function. Some of the complex algorithms can be
easily simplified by using the method of recursion. A typical recursive function will
be as follows:

int function1()

{

............

............

int n = function1(); //calling itself

............

............

}

In recursive functions, the function is usually called based on some condition only.
Following is an example for recursive function by which the factorial of a number
can be found. Note that factorial of a negative number is not defined. Therefore 'n'
can take the value either zero or a positive integer.

int factorial(int n)

{

if((n==1)||(n==0))

return 1;

else if (n>1)

return (n * factorial(n-1));

else

return 0;

}

Let us discuss how this function is executed when the user calls this function as:

f = factorial(3);

When the function is called for the first time, the value of the parameter n is 3. The
condition in the if statement is evaluated to be false. So, the else block is executed.

10. Functions

305

When the value of n is 3, the instruction in the else block becomes

return (3 * factorial(3-1));

which is simplified as: return (3 * factorial(2)); …………. (i)

In order to find 3 * factorial(2), it needs to find the value of factorial(2).

The factorial() function is called again with 2 as the argument. The function is

called within the same function. When the factorial() function is executed with

2 as the value of the parameter n, the condition in the if block becomes false. So

only the else block is executed. The instruction in the else block is:

return (2 * factorial(2-1));

which is simplified as: return (2 * factorial(1)); …………. (ii)

In order to find this returning value, it calls the factorial() function again with

1 as the value of the parameter n. Now, the condition in the if statement becomes

true, hence it will return 1 as the value of the function call factorial(1);

Now, the program can find the return value in the instruction numbered (ii). The

instruction (ii) will become: return 2 * 1;

which is same as: return 2;

That is, the value 2 is returned as the value of the function call factorial(2) in

the instruction numbered (i). Thus the instruction (i) becomes: return 3 * 2;

which is same as: return 6;

Now the value 6 is returned as the value of the function call factorial(3);.

The execution of the instruction f=factorial(3); is summarised in Figure 10.4.

The execution of the function call factorial(3) is delayed till it gets the value

of the function factorial(2). The execution of this function is delayed till it

gets the value of the function factorial(1). Once this function call gets 1 as its

return value, it returns the value to the previous function calls. Figure 10.4 shows

what happens to the arguments and return value on each call of the function.

Fig. 10.4: Control flow in a recursive function call

(((

(((

;

; ;

;

;

;

306

Note that if we call the function factorial()with a negative integer as argument,
the function will return 0. It doesn't mean that the factorial of a negative number is
0. In mathematics the factorial of a negative number is undefined. So, for example,
the value returned by the function call factorial(-3) should be interpreted as
an invalid call in the calling function.

The procedure that takes place when the function factorial() is called with 5 is
shown in Figure 10.5.

Fig. 10.5: Recursion process for factorial(5)

A function to find the factorial of a number can also be defined as follows, without
using recursion.

int factorial(int n)

{

int f=1;

/* The formula n×(n-1)×(n-2)× ... ×2×1 is appliled

instead of 1 × 2 × 3× ... ×(n-1)×n to find the factorial

*/

for(int i=n; i>1; i--)

f *= i;

return f;

}

We can compare the difference between the two functions – the one that uses
recursion and the other that does not use recursion. Every function that uses
recursion can also be written without using recursion. Then why do we use recursion?
Some programmers find the use of recursion much simpler than the other. The
recursion method cannot be used in all the functions. How do we understand whether
recursion can be applied to a function or not? If we can express a function by
performing some operation on the output of the same function, we can use recursion
for that. For example, to find the sum of first n natural numbers, we can write the
sum(n) as:

sum(n) = n + sum(n-1)

Let us discuss a program that converts a given decimal number into its equivalent
binary number. We discussed the conversion procedure in Chapter 2.

10. Functions

307

Program 10.11: To display the binary equivalent of a decimal number

#include <iostream>

using namespace std;

void Binary(int);

int main()

{

int decimal;

cout<<"Enter an integer number: ";

cin>>decimal;

cout<<"Binary equivalent of "<<decimal<<" is ";

Binary(decimal);

return 0;

}

void Binary(int n) //Definition of a recursive function

{

if (n>1)

Binary(n/2);

cout<<n%2;

}

A sample output of Program 10.11 is given below:

Enter an integer number: 19

Binary equivalent of 19 is 10011

10.7 Creation of header files

All of us know that we always use #include <iostream> in the beginning of

all the programs that we have discussed so far. Why do we use this statement?

Actually iostream is a header file that contains the declarations and definitions

of so many variables or objects that we use in C++ programs. The objects cout

and cin that we use in the program are declared in this header file. So when we

include this header file in a program, the definitions and declarations of objects

and functions are available to the compiler during compilation. Then the executable

code of these functions and objects will be linked with the program and will be

executed when and where they are called. We can create similar header files containing

our own variables and functions. Suppose we want to write a function to find the

factorial of a number and use this function in a number of programs. Instead of

defining the factorial function in all the programs, we can place the function in a

header file and then include this header file in all other programs.

308

The following example shows how we can create a header file. Enter the following
program code in any IDE editor.

int factorial(int n)

{

int f=1;

for (int i=1; i<=n; i++)

f *= i;

return f;

}

Save this in a file with the name factorial.h and then create a C++ program as
follows:

#include <iostream>

#include "factorial.h"//includes user-defined headerfile

using namespace std;

int main()

{

int n;

cout<<"Enter a number : ";

cin >> n;

cout<<"Factorial : " << factorial(n);

}

We can compile and run the program successfully. Note that the statement #include
"factorial.h" uses double quotes instead of angular brackets < >. This is
because, when we use angular brackets for including a file, the compiler will search
for the file in the include directory. But if we use double quotes, the compiler will
search for the file in the current working directory only. Usually when we save the
factorial.h file, it will be saved in the working directory, where the main C++
program is saved. So, we must use double quotes to include the file. Now, whenever
we want to include factorial function in any C++ program, we only need to include
header file factorial.h in the program by using the statement #include
"factorial.h". In the same way we can place any number of functions in a single
header file and include that header file in any program to make use of these functions.

1. If the prototype of a function is given immediately after the

preprocessor directive, its scope will be _______.

2. What is recursion?

3. What is the scope of predefined functions in C++?

4. The arguments of a function have ______ scope.

Check yourself

10. Functions

309

1. Define a function to accept a number and return 1 if it is prime, 0 otherwise.
Using this function write a program to display all prime numbers between 100
and 200.

2. Write a program to find the smallest of three or two given numbers using a
function (use the concept of default arguments).

3. With the help of a user-defined function find the sum of digits of a number.
That is, if the given number is 3245, the result should be 3+2+ 4+5 = 14.

4. Using a function, write a program to find the LCM of two given numbers.

5. Write a program to display all palindrome numbers between a given range
using a function. The function should accept number and return 1 if it is
palindrome, 0 otherwise.

After completing this chapter the learner will be able to

l recognise modular programming style and its merits.

l use predefined functions for problem solving.

l define sub functions for performing particular tasks involved in problem
solving.

l use the sub functions defined by the user.

l define the recursive functions and use them for problem solving.

Learning outcomes

Modular programming is an approach to make programming simpler.
C++ facilitates modularization with functions. Function is a named unit of program
to perform a specific task. There are two types of functions in C++: predefined
functions and user-defined functions. Predefined functions can be used in a program
only if we include the header file concerned in the program. User-defined functions
may need to be declared if the definition appears after the calling function. During
function call, data may be transferred from calling function to the called function
through arguments. Arguments may be classified as actual arguments and formal
arguments. Either call by value method or call by reference method can be used to
invoke functions. The variables and functions in a program have scope and life
depending on the place of their declaration. Though a function is called by another
function, C++ allows recursion which is a process of calling a function by itself.
New header files can be created to store the user-defined functions so that these
functions can be used in any program.

Lab activity

Let us sum up

310

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

Sample questions

Very short answer type

1. How do top down design and bottom up design differ in programming?

2. What is a function in C++?

3. The ability of a function to call itself is _________.

4. Write down the role of header files in C++ programs.

5. When will you use void data type for function definition?

Short answer type

1. Distinguish between actual parameters and formal parameters.

2. Construct the function prototypes for the following functions

(a) Total() takes two double arguments and returns a double

(b) Math() takes no arguments and has no return value

3. Distinguish between exit() function and return statement.

4. Discuss the scope of global and local variables with examples.

5. Distinguish between Call-by-value method and Call-by-reference method used
for function calls.

6. In C++, function can be invoked without specifying all its arguments. How?

7. Write down the process involved in recursion.

Long answer type

1. Look at the following functions:

int sum(int a,int b=0,int c=0)

{ return (a + b + c); }

(a) What is the speciality of the function regarding the parameter list?

(b) Give the outputs of the following function calls by explaining its working
and give reason if the function call is wrong.

(i) cout<<sum(1, 2, 3); (ii) cout<<sum(5, 2);

(iii) cout<<sum(); (iv) cout<<sum(0);

2. The prototype of a function is: int fun(int, int);

The following function calls are invalid. Give reason for each.

(a) fun(2,4); (b) cout<<fun(); (c) val=fun(2.5, 3.3);

(d) cin>>fun(a, b); (e) z=fun(3);

