Key concepts

Number systems

o Decimal, binary, octal,
hexadecimal

Number conversions
Binary arithmetic

o Addition, subfraction
Data representation

o0 Representation of infegers
and floating point numbers

o Characterrepresentation:
ASCII, EBCDIC, ISCII,
UNICODE

o Representation of audio,
image and video data

Introduction to Boolean
algebra

o Logic operators and logic
gates

Basic postulates
Basic theorems

Circuit designing for simple
Boolean expressions

Universal gates

9)@ & s@: &};‘W

ABCD»

Data Representation
and Boolean Algebra

Computer is a machine that can handle different
types of data items. We feed data such as
numbers, characters, images, videos and sounds
to a computer for processing. We know that
computer is an electronic device functioning on
the basis of two electric states - ON and OFL.
All electronic circuits have two states - open
and closed. The two-state operation is called
binary operation. Hence, the data given to
computet should also be in binary form. In this
chapter we will discuss various methods for
representing data such as numbers, characters,
images, videos and sounds.

- MR Ll
B

Fig. 2.1: External and internal form of data

Data representation is the method used
internally to represent data in a computer.

Before discussing data representation of
numbers, let us see what a number system is.

Q=0

2.1 Number systems

A number is a mathematical object used to count, label and measure. A number system
is a systematic way to represent numbers. The number system we use in our day to day
life is the decimal number system that uses 10 symbols or digits. The number 289 is
pronounced as two hundred and eighty nine and it consists of the symbols 2, 8 and 9.
Similatly there are other number systems. Each has its own symbols and method for
constructing a number. A number system has a unique base, which depends upon the
number of symbols. The number of symbols used in a number system is called base
ot radix of a number system.

Let us discuss some of the number systems.

2.1.1 Decimal number system

The decimal number system involves ten symbols 0, 1, 2, 3,4, 5,6, 7, 8 and 9 to form
a number. Since there are ten symbols in this number system, its base is 10. Therefore,
the decimal number system is also known as base-10 number system.

Consider two decimal numbers 743 and 347
743 — seven hundred + four tens+ three ones (7x10% + 4x10'+ 3x10°)
347 — three hundteds + fout tens + seven ones (3x10* + 4 x10'+ 7x10%

Here, place value (weight) of 7 in first number 743 is 10> =100. But weight of 7 in
second number 347 is 10°=1. The weight of a digit depends on its relative position.
Such a number system is known as positional number system. All positional number
systems have a base and the place value of a digit is some power of this base.

Place value of each decimal digit is power of 10 (10°, 10", 107, ...). Consider a decimal

number 5876.

This number can be written in expanded form as
Weight 10° 107 10! 10°
Decimal Number 5 8 7 6

= 5x10° + 8x10* + 7x10' + 6x10°

= 5x1000+ 8x100 + 7x10 + 6x1

= 5000+ 800+70+6

= 5876
In the above example, the digit 5 has the maximum place value, 10°=1000 and 6 has
the minimum place value, 10°=1. The digit with most weight is called Most Significant

_

@ ® ® 2. Data Representation and Boolean Algebra

Digit (MSD) and the digit with least weight is called Least Significant Digit (I.SD). So
in the above number MSD is 5 and LSD is 6.

Left most digit of a number is MSD and right most digit of a number is LSD

For fractional numbers weights ate negative powets of 10 (10,102 10%, ...) for the
digits to the right of decimal point. Consider another example 249.367

Weight 10? 10! 10° 10! 102 107
Decimal Number 2 4 9 3 6 7
MSD) 1.SD

= 2x10? +4 x10' + 9x10° + 3x10" + 6x102+ 7x107
= 2x100 +4 x10 +9x1 + 3x0.1 + 6x0.01 + 7x0.001
= 200+40+9+0.3+0.06+0.007

= 249.367

So far we have discussed a number system which uses 10 symbols. Now let us see the
construction of other number systems with different bases.

2.1.2 Binary number system

A number system which uses only two symbols 0 and 1 to form a number is called
binary number system. Bi means two. Base of this number system is 2. So it is also
called base-2 number system. We use the subscript 2 to indicate that the number is in

binary.
e.g (1101),, (101010),, (1101.11),
Each digit of a binary number is called bit. A bit stands for binary digit.

The binary number system is also a positional number system where place value of
each binary digit is power of 2. Consider an example (1101),. This binary number can
be written in expanded form as shown below:

Weight 2’ 22 2! 20
Binary Number 1 1 0 1
MSB LSB

= 1x2® +1x 2% +0x2! +1x2°

= 1x8+ Ix4 + 0x2 + 1x1

= 8+4+0+1

= 13
The right most bit in a binary number is called Least significant Bit (LSB). The leftmost
bit in a binary number is called Most significant Bit (MSB).

e |

The binary number 1101 is equivalent to the decimal number 13. The number 1101
also exists in the decimal number system. But it is interpreted as one thousand one
hundred and one. To avoid this confusion, base must be specified in all number systems
other than decimal number system. The general format is

(Number),

This notation helps to differentiate numbers of different bases. So a binary number
must be represented with base 2 as (1101), and it is read as “one one zero one to the
base two”.

If no base is given in a number, it will be considered as decimal. In other words,
specifying the base is not compulsory in decimal number.

For fractional numbers, weights atre negative powers of 2 (2, 22 27 ..) for the
digits to the right of the binary point. Consider an example (111.011),

Weight 22 2! 20 2 27 27
Binary Number 1 1 1 0 1 1
MSB) LSB

1x22 + 1x21 + 1x2° + 0x21 + 1x22 + 1x23

1 1 1
1x4+1x2+1x1 +0x— +1x— +1x-
2 4 g8

= 4424+1+0+025+0.125
= 7375

Importance of binary numbers in computers

We have seen that binary number system is based on two digits 1 and 0. The electric
state ON can be represented by 1 and the OFF state by 0 as in Figure 2.2. Because of
this, computer uses binary number system as the basic number system for data
representation.

VIV RY UL L

Fig. 2.2 : Digital representation of ON and OFF

2.1.3 Octal number system

A number system which uses eight symbols 0,1, 2, 3,4, 5,6 and 7 to form a number
is called octal number system. Octa means eight, hence this number system is called

_

2. Data Representation and Boolean Algebra

octal. Base of this number system is 8 and hence it is also called base-8 number system.
Consider an example (236),. Weight of each digitis power of 8 (8", 8',8% 8’,...). The
number (236), can be written in expanded form as

Weight 8 8! 8"
Octal Number 2 3 6
= 2x8 +3x8' + 6x8°
= 2x64 +3x8 + 6x1
= 128+24+6
= 158

For fractional numbers weights are negative powets of 8,i.e. (8,872 87, ...) for the
digits to the right of the octal point. Consider an example (172.4),

Weight 8 8! 8" 8!
Octal Number 1 7 2 4
= 1x82 + 7x8! +2x8° + 4x8!

1
= 64+ 56+2+dx

= 122 +0.5
= 122.5

2.1.4 Hexadecimal number system

A number system which uses 16 symbols 0, 1,2,3,4,5,6,7,8,9,A,B,C,D,E and I
to form a number is called hexadecimal number system. Base of this number system is
16 as there are sixteen symbols in this number system. Hence this number system is
also called base-16 number system.

In this system, the symbols A, B, C, D, E and I are used to represent the decimal
numbers 10, 11, 12,13, 14 and 15 respectively. The hexadecimal digit and their equivalent
decimal numbers are shown below.

Hexadecimal | O | 1| 2345|678 9|A|B|C|I[D|E]|F

Decimal Of1 12134516789]10(11[12]113]|14(15

Consider a hexadecimal number (12AF), . Weights of each digit is power of 16 (16",
16', 16% ...).

e d—

) ® ® Computer Science - XI

This number can be written in expanded form as shown below:

Weight 16° 162 16! 16°

Hexadecimal Number 1 2 A F
= I1x163+ 2x16% + 10x16'+ 15x16°
= 1x4096 + 2x256 + 10x16 + 15x1
= 4096 + 512+ 160 + 15

= 4783
For fractional numbers, weights are some negative power of 16 (167,162,167, ...) for
the digits to the right of the hexadecimal point. Consider an example (2D.4),

Weight 16! 16" 167
Hexadecimal 2 D 4

1
2x16' + 13x16° + 4XE

= 32+13+0.25
= 45.25
Table 2.1 shows the base and symbols used in different number systems:

Number System Symbols used

Binary 2 0,1

Octal 8 0,1,2,3,4,5,06,7

Decimal 10 0,1,2,3,4,5,6,7,8,9

Hexadecimal 16 0,1,2,3,4,56,7,8 9, A,B,C,D,EF

Table 2.1 : Number systems with base and symbols

Importance of octal and hexadecimal number systems

As we have discussed, digital hardware uses the binary number system for its operations
and data. Representing numbers and operations in binary form requires too many bits
and needs lot of effort. With octal, the bits are grouped in threes (because 2° = 8) and
with hexadecimal, the bits ate grouped in four (because 2* = 16) and these groups are
replaced with the respective octal or hexadecimal symbol. This conversion processes
of binary numbers to octal and hexadecimal number systems and vice versa are very
easy. This short-hand notation is widely used in the design and operations of electronic
circuits.

_

2. Data Representation and Boolean Algebra

= ® ® Comput

Check yourself

1. Number of symbols used in a number systemis called .
2. Pickinvalid numbers from the following

) (10101), i) (123), i) (768), iv) (ABO),,
3. Define the term ‘bit’.
4. Find MSD in the decimal number 7854.25.

5. The base of hexadecimal number system is

2.2 Number conversions

After having learnt the various number systems, let us now discuss how to convert the
numbers of one base to the equivalent numbers in other bases. There are different
types of number conversions like decimal to binary, binary to decimal, decimal to
octal etc. This section discusses how to convert one number system to another.

2.2.1 Decimal to binary conversion

The method of converting decimal number to binary number is by repeated division.
In this method the decimal number is successively divided by 2 and the remainders are
recorded. The binary equivalent is obtained by grouping all the remainders, with the
last remainder being the Most Significant Bit (MSB) and first remainder being the
Least Significant Bit (LSB). In all these cases the remainders will be either 0 or 1 (binary

digit).
Examples:
Find binary equivalent of decimal Find binary equivalent of (80), .
number 25. 2180 Remainders
2 25 Remainders 240 0 t 155
2| 12 1 4 LSB = !
26 0 .
> [3 0 215 0
5 1 1 212 1

0 1 MSB 2 0

0 1 MSB

(@), =0,) (" @80),, = (1010000),)

-

™ ® ® Computer Science - XI

Hint: Binary equivalent of an odd decimal number ends with 1 and binary of even

decimal number ends with zero.

Converting decimal fraction to binary

To convert a fractional decimal number to binary, we use the method of repeated
multiplication by 2. At first the decimal fraction is multiplied by 2. The integer part of
the answer will be the MSB of binary fraction. Again the fractional part of the answer
is multiplied by 2 to obtain the next significant bit of binary fraction. The procedure is
continued till the fractional part of productis zero or a desired precision is obtained.

Example: Convert 0.75 to binary.

0.75 x 2 =1.50

S50 x 2 =1.00

.00

Example: Convert 0.625 to binary.

0.625 x 2 =1.25

1 25 x 2 =0.50
0 S50 x 2 =1.00
1 .00

Example: Convert 15.25 to binary.

Remainders

Convert 15 to binary
2 15
2 7 1 4
2 3 1
2 1 1
0 1

((0.75)10 = (0.11),)

(0.625),,= (0.101),)

Convert 0.25 to binary

0
1

025 x 2 =0.50

S50 x 2 =1.00

.00

(15.2),, = 11101,)

2.2.2 Decimal to octal conversion

The method of converting decimal number to octal number is also by repeated
division. In this method the number is successively divided by 8 and the remainders

_

2. Data Representation and Boolean Algebra

are recorded. The octal equivalent is obtained by grouping all the remainders, with the
last remainder being the MSD and first remainder being the LSD. Remainders will be
0,1,2,3,4,5 6ot 7.

Example: Find octal equivalent of decimal number 125.

8 125 Remainders
s | 15 5 1 1sD
8 1 7
0 1 | MsD (@2s),= a75),)

Example: Find octal equivalent of (400), .

8 400 Remainders

8| 50 0

8| 2 ((400)10=(620)8)
0 6

2.2.3 Decimal to hexadecimal conversion

The method of converting decimal number to hexadecimal number is also by repeated
division . In this method, the number is successively divided by 16 and the remainders
are recorded. The hexadecimal equivalent is obtained by grouping all the remainders,
with the last remainder being the Most Significant Digit (MSD) and first remainder
being the Least Significant Digit(I.SD). Remainders will be 0, 1, 2, 3,4, 5,6, 7, 8,9, A,
B,C,D,EorE

Example: I'ind hexadecimal equivalent of decimal number 155.
16| 155 Remainders

6] 9 11®)] — LSD

0 9 — MSD ((155), = (9B)16j

Example: Find hexadecimal equivalent of 380.

16] 380 Remainders
16 23 12 (C) ‘

16 1 7
0 1

(680),=70),,)

]

@0

2.2.4 Binary to decimal conversion

A binary number can be converted into its decimal equivalent by summing up the
product of each bit and its weight. Weights ate some power of 2 (2°,2',22 2°).

Example: Convert (11011), to decimal.

(11011), = 1x24+ 1x23+ 0x22+ 1x2! 4+ 1x20 | Weight | 21 27| 27 2] 27
= 16+8+2+1 Bit 1]1]0]1]1
= 27 ((11011) , =(27),,)

Example: Convert (1100010), to decimal.

Weight | 2°[2°] 2* 23| 22 2'| 2°

Bit 1] 1] o] o] o] 1] 0
(1100010), = 1x2°+ 1x2°+ 0x2* 4+ 0x2* + 0x2%+ 1x2" + 0x2"
= 64+32+2
= 98 ((1100010)2=(98)10)

Table 2.2 may help us to find powers of 2.
210 29 28 27 26 25 24 23 22 21 20
1024 512 | 256 | 128 64| 32 16 8 4 2 1

Table 2.2 : Powers of 2
Converting binary fraction to decimal

A binary fraction number can be converted into its decimal equivalent by summing up
the product of each bit and its weight. Weights of binary fractions are negative powers
of 2 (21,2227,) for the digits after the binaty point.

Example: Convert (0.101), to decimal.
(0.101), =1x2"+0x22+ 1x27

Weight |271] 22| 27

=0.5+0+0.125 Bit o1
=0.625 ((0.101) = (0.625)10)
Example: Convert (1010.11), to decimal.
(1010), =1x2°+ 0x22+ 1x2'+ 0x2° Y BN ER e T
=8+ 0+2+0
=10 (1010), = (10),, L2t LOJt]o

_

A®O |

2. Data Representation and Boolean Algebra
0.11), =1x2"1+ 1x22 Weight |27] 272
=0.5+0.25 Bit 111
=0.75 0.11), =(0.75),,

((@o10.11), = (10.75),,)

Table 2.3 shows some negative powers of 2.
2—1 2—2 2»3 2»4 2—5
0.5 0.25 0.125 0.0625 0.03125

Table 2.3 : Negative powers of 2
2.2.5 Octal to decimal conversion

An octal number can be converted into its decimal equivalent by summing up the
product of each octal digit and its weight. Weights ate some powers of 8 (8", 8', 87,
8, ..).

Example: Convert (157), to decimal. Weight 2 gl g0
(157), = 1x8*+ 5x8' + 7x8’ Octal digit | 1 5 -
= 64+ 40 +7
=111 ((157), = (111),,)
Example: Convert (1005), to decimal.
(1005), = 1x8'+ 0x8 + 0x8' + 5x8" Weight ¢ e e
= 51245 Octal digit 1 0 0] 5
=517 ((1005), = (517)10)

2.2.6 Hexadecimal to decimal conversion

An hexadecimal number can be converted into its decimal equivalent by summing up

the product of each hexadecimal digit and its weight. Weights ate powets of 16 (16,
16', 167, ...).

Example: Convert (AB), to decimal.

(AB),, =10x16'+11x16" Weight o 1 1
=160 + 11 Hexadecimal digit A B
=171 T

((AB), = (171)10)

i

~®®

Example: Convert (2D5), - to decimal.

(2D5),, =2x16°+13x16'+5x16" Weight 16> | 16" | 1¢6°
= 512420845 Hexadecimal digit| 2 [D [5
=725 D=13

(@2D5), = (725),,

2.2.7 Octal to binary conversion

An octal number can be converted into binary by converting each octal digit to its 3
bit binary equivalent. Eight possible octal digits and their binary equivalents are listed
in Table 2.4.

Octal Digit 0 1 2 3 4 5 6 7
Binary Equivalent 000 | 001 | 010 | 011 100 | 101 110 | 111

Table 2.4 : Binary equivalent of octal digit
Example: Convert (437), to binary.

3-bit binary equivalents of each octal digit are

4 3 7
\ \ \
100 011 111

((437)8=(100011111)Zj

Example: Convert (7201), to binary.

3-bit binary equivalents of each octal digits are

7 2 0 1
\ \ \ \
111 010 000 001

((7201), = (111010000001),)

2.2.8 Hexadecimal to binary conversion

A hexadecimal number can be converted into binary by converting each hexadecimal
digit to its 4 bit binary equivalent. Sixteen possible hexadecimal digits and their binary
equivalents are listed in Table 2.5.

Example: Convert (AB), to binary.

4-bit binary equivalents of each hexadecimal digit are

_

2. Data Representation and Boolean Algebra

A B Hexa Binary
\ N decimal | equivalent
10101011 L L
((AB) 6= (10101011)2) 1 0001
Z 0010
Example: Convert (2F15), to binary. : 0011
4-bit binary equivalents of each hexadecimal digit are 4 0100
2 3 1 5 5 0101
v v v v 6 0110
0010 1111 0001 0101 v 0111
((2F15), = (10111100010101)2) 8 1000
. . 9 1001
2.2.9 Binary to octal conversion
A 1010
A binary number can be converted into its octal equivalent
- .) B 1011
by grouping binary digits to group of 3 bits and then each
group is converted to its octal equivalent. Start grouping C 1100
trom right to left. D 1101
Example: Convert (101100111), to octal. B 1110
We can group above binary number 101100111 from right F 1111
as shown below. Table 2.5 :
101 100 11 Binary equivalent of
hexadecimal digits
\ \ \
5 4 7

(aonoonn), = (547),)
Example: Convert (10011000011), to octal.

We can group above binary number 10011000011 from right as shown below.
010 011 000 011

\ \ \ \

2 3 0 3

((10011000011)2 =(2303),)

After grouping, if the
left most group has no
3 bits, then add
leading zeros to form
3 bit binary.

® ® ® Computer Science - XI

2.2.10 Binary to hexadecimal conversion

A binary number can be converted into its hexadecimal equivalent by grouping binary
digits to group of 4 bits and then each group is converted to its hexadecimal equivalent.
Start grouping from right to left.

Example: Convert (101100111010), to hexadecimal.
We can group the given binary number 101100111010 from right as shown below:

1011 0011 1010
\ \ \
B 3 A

((101100111010)2= (B3A),,)

Example: Convert (110111100001100), to hexadecimal.
We can group the given binary number 110111100001100 from right as shown below:

0110 1111 0000 1100
\ \ \ \
6 F 0 C

((110111100001100), = (6F0C),

After grouping, if the
left most group has no
4 bits, then add
leading zeros to form
4 bit binary.

2.2.11 Octal to hexadecimal conversion

Conversion of an octal number to hexadecimal number is a two step process. Octal
number is first converted into binary. This binary equivalent is then converted into
hexadecimal.

Example: Convert (457), to hexadecimal equivalent.

First convert (457), into binary.

@57),= 4 5 7
\ \
100 101 111

= (100101111),

Then convert (100101111), into hexadecimal as follows:
(100101111), = 0001 0010 1111

\ o o
=1 2 F
= (12F),, ((457) = (12F),,)

_

A®®

2. Data Representation and Boolean Algebra

2.2.12 Hexadecimal to octal conversion

Conversion of an hexadecimal to octal number is also a two step process. Hexadecimal
number is first converted into binary. This binary equivalent is then converted into

octal.

Example: Convert (A2D), into octal equivalent.

First convert (A2D), ~ into binary.

(A2D) = A 2 D
“ \ \ \
1010 0010 1101
=(101000101101),
Then convert (101000101101), into octal as follows:
(101000101101), = 101 000 101 101
\ \ \
5 0 5 5
= (5055),

Table 2.6 shows procedures for various number conversions.

Conversion

Procedure

Decimal to Binary

Repeated division by 2 and grouping the remainders

Decimal to Octal

Repeated division by 8 and grouping the remainders

Decimal to Hexadecimal

Repeated division by 16 and grouping the remainders

Binary to Decimal

Multiply binary digit by place value(power of 2) and
find their sum

Octal to Decimal

Multiply octal digit by place value (power of 8) and
find their sum

Hexadecimal to Decimal

Multiply hexadecimal digit by place value (power of
16) and find their sum

Octal to Binary

Converting each octal digit to its 3 bit binary equivalent

Hexadecimal to Binary

Converting each hexadecimal digit to its 4 bit binary
equivalent

Binary to Octal

Grouping binary digits to group of 3 bits from right to
left

Binary to Hexadecimal

Grouping binary digits to group of 4 bits from right to
left

Octal to Hexadecimal

Convert octal to binary and then binary to hexadecimal

Hexadecimal to Octal

Convert hexadecimal to binary and then binary to octal

Table 2.6 : Procedure for number conversions

™ ® ® Computer Science - XI

Check yourself

Fill in the blanks:

D), =
b) (__D_), =
c) 025 =

Convert the decimal number 31 to binary.
Find decimal equivalent of (10001),
If (x), = (101011),, then find x.

(AB),,
(1010____1000),
()

5 Find the largest number in the list

@ (1001), @ (),

(i) (10), (@) (A1),

2.3 Binary arithmetic

As in the case of decimal number system, arithmetic operations are performed in
binary number system. When we give instruction to add two decimal numbers, the
computer actually adds their binary equivalents. Let us see how binary addition and

subtraction are carried out.

2.3.1 Binary addition

The rules for adding two bits are as follows:

A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Note that a carry bit 1 is created only when two ones are added. If three ones are
added (.e. 1+1+1), then the sum bit is 1 with a carry bit 1.

Example: Iind sum of binary numbers
1011 and 1001.
1011+
1001
10100

_

Example: Find sum of binary numbers
110111 and 10011.
110111 +
100110
1011101

™ ® ™ Comput

2. Data Representation and Boolean Algebra

2.3.2 Binary subtraction

The rules for subtracting a binary digit from another digit are as follows.

A B Difference Borrow
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Note that when 1 is subtracted from 0 the difference is 1, but 1 is borrowed from
immediate left bit of first number. The above rules can be used only when a small
binary number is subtracted from a large binary number.

Example: Subtract (10101), from | Example: Subtract (10111), from
(11111),, (101000),.

11111 = 101000 —

10101 10111

01010 10001

2.4 Data representation

Computer uses a fixed number of bits to represent a piece of data which could be a
number, a character, image, sound, video etc. Data representation is the method used
internally to represent data in a computer. Let us see how various types of data can be
represented in computer memory.

2.4.1 Representation of numbers

Numbers can be classified into integer numbers and floating point numbers. Integers
are whole numbers or numbers without any fractional part. A floating point number
or a real number is a number with fractional part. These two numbers are treated
differently in computer memory. Let us see how integers are represented.

a. Representation of integers

There are three methods for representing an integer number in computer memory.
They are

1) Sign and magnitude representation

1) 1’s complement representation

i) 2’s complement representation

The following data representation methods are based on 8 bit word length.

A

@ < @

A word is basically a fixed-sized group of bits that are handled as a unit by a processor.
Number of bits in a word 1s called word length. The word length is the choice of
computer designer and some popular word lengths are 8, 16, 32 and 64.

i. Sign and magnitude representation

In this method, first bit from left (MSB) is used for representing sign of integer and
remaining 7-bits are used for representing magnitude of integer. For negative integers
sign bit is 1 and for positive integers sign bit is 0. Magnitude is represented as 7-bit
binary equivalent of the integer.

Example: Represent + 23 in sign and magnitude form.
Number is positive, so first bit (MSB) is 0. Sign |«—— Magnitude ——
7 bit binary equivalent of 23 = (0010111), !
So + 23 can be represented as (00010111), (0 OO oIt

Example: Represent -105 in sign and magnitude form.
Number is negative, so first bit(MSB) is 1 Sign Magnitude
7 bit binary equivalent of 105 = (1101001),

So -105 can be represented as (11101 001)2 (1

1 (11011001

Note: In this method an 8 bit word can reptesent 2°-1 =255 numbers (i.e. -127 to
+127). Similarly, a 16 bit word can represent 2'°-1 = 65535 numbers (i.e. -32767 to
+32767). So, an #-bit wotd can reptresent 2°-1 numbers i.e., —(2"'-1) to +(2*'-1). The
integer 0 can be represented in two ways: +0 = 00000000 and —0 = 10000000.

ii. I’s complement representation

In this method, first find binary equivalent of absolute value of integer. If number of
digits in binary equivalent is less than 8, provide zero(s) at the left to make it 8-bit
form. 1’s complement of a binary number is obtained by replacing every 0 with 1 and
every 1 with 0. Some binary numbers and the corresponding 1's compliments are
given below:

Binary Number 1’s Complement

11001 00110
10101 01010

If the number is negative it is represented as 1’s complement of 8-bit form binary. If
the number is positive, the 8-bit form binary equivalent itself is the 1's complement
representation.

_

™ ® ® 2. Data Representation and Boolean Algebra

Example: Represent-119 in 1’s complement form.

Binary of 119 in 8-bit form = (01110111),
-119in 1’s complement form = (10001000),

Example: Represent +119 in 1’s complement form.

Binary of 119in 8-bit form = (01110111),

+119in 1’s complement form = (01110111),
(No need to find 1% complement, since the number is positive)

Note: In this representation if first bit (MSB) is 0 then number is positive and if MSB
is 1 then number is negative. So 8 bit word can represent integers from -127 (represented
as 10000000) to +127 (represented as 01111111). Here also integer 0 can be
represented in two ways: +0 = 00000000 and —0 = 11111111. An #-bit word can
represent 2°-1 numbersie. -(2™'-1) to +(2"'-1).

iii. 2’s complement representation

In this method, first find binary equivalent of absolute value of integer and write it in
8-bit form. If the number is negative, it is represented as 2’s complement of 8-bit
form binary. If the number is positive, 8-bit form binary itself is the representation.
2’s complement of a binary number is calculated by adding 1 to its 1’s complement.

For example, let us find the 2’s complement of (10101),.

I’s complement of (10101), = (01010),

So 2’ complement of (10101), = 01010 +
1

= (01011),

Example: Represent -38 in 2’s complement form.

Binary of 38in 8-bit form = (00100110),
-38in 2’s complement form = 11011001+

1
= (11011010),
Example: Represent +38 in 2’s complement form.
Binary of 38 in 8-bit form = (00100110,

+38in 2’s complement form = (00100110), (No need to find 2’s complement)

Note: In this representation if first bit (MSB) is 0 then number is positive and if MSB
is 1 then number is negative. Here integer 0 has only one way of representation and is
00000000. So an 8 bit word can represent integers from -128 (represented as 10000000)
to +127(represented as 01111111). Itis the most common integer representation. An
n-bit word can reptresent 2" numbers -(2"") to + (27'-1). Table 2.7 shows the compatison
of different representation methods of integers in 8-bit word length.

-

bit binary form

Features Sign & Magnitude| 1’s Complement 2’s Complement Remarks
Range -127 to +127 -127 to +127 -128 to +127 Range is more in
1
Total Numbers|255 255 256 2's complement
Representation|Two ways of Two ways of Only one way of In2 Sl
of integer 0 [representation representation representation complement
there is no
ambiguity in 0
representation
Representation | Binary equivalent |Binary equivalent [Binary equivalent All three forms
of positive of integer in 8 bit|of integer in 8 bit[of integer in 8 bit AECES AT
integers form form form
Representation [Sign bit 1 and Find 1's Find 2's For all negative
of negative magnitude is complement of |complement of 8 |pumbers MSB is
integers represented in 7 |8 bit form binary |bit form binary 1

Table 2.7 : Comparison for representation of integers in 8-bit word length

Subtraction using complements

We have discussed how to subtract a binary number from another binary number. But
to design and implement an electronic circuit for this method of subtraction is really
complex and difficult. Circuitry for binary addition is simpler. So it is better if we can
subtract through addition. For that we use the concept of complements. There are
two methods of subtraction using complements.

Subtraction using 1I’s complement

The steps for subtracting a smaller binary number from a larger binary number are:

with same number of bits.

Step 1:
Step 2:
number)
Step 3:
larger number)
Step 4:

Add the carry 1 to the sum to get the answer.

Example: Subtract 100, from 1010, using 1’s complement.
At first find 1’s complement of 0100 and itis 1011

Add Os to the left of smaller number, if necessary, to make two numbers
Find 1’s complement of subtrahend (Number to be subtracted, here small

Add the complement with minuend (Number from which subtracting, here

_

2. Data Representation and Boolean Algebra

To compare the three types of representations let us consider the
following table. For clarity and easy illustration, 4-bits are used to
represent the numbers in this table .

Number | Sign & Magnitude| 1's Complement 2's Complement
-8 Not possible Not possible 1000
-7 1111 1000 1001
-6 1110 1001 1010
-5 1101 1010 1011
-4 1100 1011 1100
-3 1011 1100 1101
-2 1010 1101 1110
-1 1001 1110 1111
0 1000 or 0000 0000 or 1111 0000
1 0001 0001 0001
2 0010 0010 0010
3 0011 0011 0011
4 0100 0100 0100
5 0101 0101 0101
6 0110 0110 0110
__7 0111 0111 0111 Y,

From this table, it is clear that the MSB of a binary number indicates the sign
of the corresponding decimal number irrespective of the representation. That
is, if the MSB is 1, the number is negative and if it is O, the number is positive.
The table also shows that only 2's complement method can represent the
maximum numbers for a given number of bits. This fact reveals that, a number
below -7 and above +7 cannot be represented using 4-bits in sign & magnitude
form and 1's complement form. So we go for 8-bit representation. Similarly in
2's complement method, if we want to handle numbers outside the range -8 to
+7, eight bits are required.

In 8-bits implementation, the numbers from -128 to +127 can be represented
in 2's complement method. The range will be -127 to +127 for the other two
methods. For the numbers outside this range, we use 16 bits and so on for all
the representations.

(=) ® ® Computer Science - XI

Add it with larger number, i.e. 1010 +
1011
— 10101
0101 MSB is removed and
1 added with the result
The resultis 0110

Subtraction using 2’s complement

To subtract a smaller binary number from a larger binary number the following are the
steps.

Step1: AddOs to the left of smaller number, if necessary, to make the two numbers
have the same number of bits.

Step 2: Find 2’s complement of subtrahend (Number to be subtracted, here the
smaller number).

Step 3: Add the 2's complement with minuend (Number from which subtracting,
here the larger number).

Step 3: Ignore the carry.

Example: Subtract (100), from (1010), using 2’s complement.

2’s complement of 0100 1100
Add it with larger number, i.c. 1010 +

Ignore the carry to 1100

get the result 10110

The resultis 110

b. Representation of floating point numbers

A floating point numbet / teal number consists of an integet part and a fractional
part. A real number can be written in a special notation called the floating point
notation. Any number in this notation contains two patts, mantissa and exponent.

For example, 25.45 can be written as 0.2545X10% where 0.2545 is the mantissa and the
power 2 is the exponent. (In normalised floating point notation mantissa is between
0.1 and 1). Similatly -0.0035 can be wtitten as -0.35x10%, where -0.35 is mantissa and
-21s exponent.

Let us see how a real number is represented in 32 bit word length computer. Here 24
bits are used for storing mantissa (among these the first bit is for sign) and 8 bits are
used for storing exponent (first bit for sign) as in Figure 2.3. Assume that decimal

-

= ® @ Computer Science - X 2. Data Representation and Boolean Algebra

point is to the right of the sign bit of mantissa. No separate space is reserved for

storing decimal point.
Mantiss;(24 bits) Expone:'r(lt (8 bits)

Fig 2.3: Representation of floating point numbers

Consider the real number 25.45 mentioned eatlier, that can be written as 0.2545x107,
where 0.2545 is the mantissa and 2 is the exponent. These numbers are converted into
binary and stored in respective locations. Various standards are followed for
representing mantissa and exponent. When word length changes, bits used for storing
mantissa and exponents will change accordingly.

In real numbers, binary point keeps track of mantissa part and exponent part.
Since the value of mantissa and exponent varies from number to humber the
L) binary point is not fixed. In other words it floats and hence such a

=]
representation is called floating point representation.

2.4.2 Representation of characters

We have discussed methods for representing numbers in computer memory. Similatly
there are different methods to represent characters. Some of them are discussed below.

a. ASCII

The code called ASCII (pronounced “AS-key”), which stands for American Standard
Code for Information Interchange, uses 7 bits to represent each character in computer
memory. The ASCII representation has been adopted as a standard by the U.S.
government and is widely accepted. A unique integer number is assigned to each
character. This number called ASCII code of that character is converted into binary
for storing in memory. For example, ASCII code of A is 65, its binary equivalent in 7-
bit is 1000001. Since there are exactly 128 unique combinations of 7 bits, this 7-bit
code can represent only128 characters.

Another version is ASCII-8, also called extended ASCII, which uses 8 bits for each
character, can represent 256 different characters. For example, the letter A is represented
by 01000001, B by 01000010 and so on. ASCII code is enough to represent all of the

standard keyboard characters.

-

@ < @

b. EBCDIC

It stands for Extended Binary Coded Decimal Interchange Code. This is similar to
ASCII and is an 8 bit code used in computers manufactured by International Business
Machine (IBM). Itis capable of encoding 256 characters. If ASCII coded datais to be
used in a computer which uses EBCDIC representation, it is necessary to transform
ASCII code to EBCDIC code. Similarly if EBCDIC coded data is to be used in a
ASCII computer, EBCDIC code has to be transformed to ASCII.

c. ISCII

ISCII stands for Indian Standard Code for Information Interchange or Indian Script
Code for Information Interchange. Itis an encoding scheme for representing various
writing systems of India. ISCII uses 8-bits for data representation. It was evolved by
a standardisation committee under the Department of Electronics during 1986-88,
and adopted by the Bureau of Indian Standards (BIS). Nowadays ISCII has been
replaced by Unicode.

d. Unicode

Using 8-bit ASCII we can represent only 256 characters. This cannot represent all
characters of written languages of the world and other symbols. Unicode is developed
to resolve this problem. It aims to provide a standard character encoding scheme,
which is universal and efficient. It provides a unique number for every character, no
matter what the language and platform be.

Unicode originally used 16 bits which can represent up to 65,536 characters. It is
maintained by a non-profit organisation called the Unicode Consortium. The
Consortium first published the version 1.0.0 in 1991 and continues to develop standards
based on that original work. Nowadays Unicode uses more than 16 bits and hence it
can represent more characters. Unicode can represent characters in almost all written
languages of the world.

2.4.3 Representation of audio, image and video

In the previous sections we have discussed different data representation techniques
and standards used for the computer representation of numbers and characters. While
we attempt to solve real life problems with the aid of a digital computer, in most cases
we may have to represent and process data other than numbers and characters. This
may include audio data, images and videos. We can see that like numbers and characters,
the audio, image and video data also carry information. In this section we will see
different file formats for storing sound, image and video.

_

™ ® ® 2. Data Representation and Boolean Algebra

Digital audio, image and video file formats

Multimedia data such as audio, image and video are stored in different types of files.
The variety of file formats is due to the fact that there are quite a few approaches to
compressing the data and a number of different ways of packaging the data. For
example an image is most popularly stored in Joint Picture Experts Group (JPEG)
file format. An image file consists of two parts - header information and image data.
Information such as name of the file, size, modified data, file format, etc. are stored in
the header part. The intensity value of all pixels is stored in the data part of the file.

The data can be stored uncompressed or compressed to reduce the file size. Normally,
the image data is stored in compressed form. Let us understand what compression is.
Take a simple example of a pure black image of size 400x400 pixels. We can repeat
the information black, black, ..., black in all 16,0000 (400x400) pixels. This is the
uncompressed form, while in the compressed form black is stored only once and
information to repeat it 1,60,000 times is also stored. Numerous such techniques are
used to achieve compression. Depending on the application, images are stored in
various file formats such as bitmap file format (BMP), Tagged Image File Format
(TTFF), Graphics Interchange Format (GIF), Portable (Public) Network Graphic
(PNG).

What we said about the header file information and compression is also applicable for
audio and video files. Digital audio data can be stored in different file formats like
WAV, MP3, MIDI, AIFE etc. An audio file describes a format, sometimes referred to
as the ‘container format’, for storing digital audio data. For example WAV file format
typically contains uncompressed sound and MP3 files typically contain compressed
audio data. The synthesised music data is stored in MIDI(Musical Instrument Digital
Interface) files. Similarly video is also stored in different files such as AVI (Audio Video
Interleave) - a file format designed to store both audio and video data in a standard
package that allows synchronous audio with video playback, MP3, JPEG-2, WMV,
etc.

Check yourself

1. Which is the MSB of representation of -80 in the sign and
magnitude method?

Write 28.756 in mantissa exponent form.
ASCIT stands for

Represent -60 in 1's complement form.
Define Unicode.

List any two image file formats.

SAN L

(=) @ @

2.5 Introduction to Boolean algebra

In many situations in our life we face questions that require ‘Yes’ or ‘No’ answers.
Similarly much of our thinking process involves answering questions with “Yes’ or
‘No’. The way of finding truth by answering such two-valued questions is known as
human reasoning or logical reasoning. These values can be
expressed as “True’ or Talse’ and numerically 1 or 0. These
values are known as binary values or Boolean values. Boolean
algebra is the algebra of logic which is a part of mathematical
algebra that deals with the operations on vatiables that represent
the values 1 and 0. The name Boolean algebra is given to honour

the British mathematician George Boole, as he was the person
who established the link between logic and mathematics. His
revolutionary paper ‘An Investigation of the laws of thought’

Fig. 2.4: George

led to the development of Boolean algebra. Boole (1815 - 1864)

2.5.1 Binary valued quantities

Let us consider the following:

1. Should I take an umbrella?

2. Will you give me your pen?

3. George Boole was a British mathematician.
4. Kerala is the biggest state in India.

5. Why were you absent yesterday?

6. What is your opinion about Boolean algebra?

1" and 2™ sentences ate questions which can be answered as YES or NO. These cases
ate called binary decisions and the results are called binary values. The 3 statement is
TRUE and 4" statement is FALSE. But 5" and 6 sentences cannot be answeted like
the cases above. The sentences which can be determined to be TRUE or FALSE are
called logical statements or truth functions and the results TRUE or FALSE are
called binary values or logical constants. The logical constants are represented by 1
and 0, where 1 stands for TRUE and 0 for FALSE. The variables which can store
(hold) logical constants 1 and 0 are called logical variables or Boolean variables.

2.5.2 Boolean operators and logic gates

We have already seen that data fed to a computer must be converted into a combination
of 1sand 0s. All data, information and operations ate represented inside the computer

_

™ ® ® 2. Data Representation and Boolean Algebra

using Os and 1s. The operations performed on these Boolean values are called Boolean
operations. As we know, operators are required to perform these operations. These
operators are called Boolean operators or logical operators. There are three basic
logical operators in Boolean algebra. These operators and their operations are as
follows:

OR - Logical Addition

AND - Logical Multiplication

NOT -> Logical Negation
The first two operators require two operands and the third requires only one operand.
Here the operands are always Boolean variable or constants and the result will always
be either True (1) or False (0).

Computers perform these operations with some electronic circuits, called logic circuits.
A logic circuit is made up of individual units called gates, where a gate represents a
Boolean operation. A Logic gate is a physical device that can perform logical
opetations on one or more logical inputs and produce a single logical output. Logic
gates are primarily implemented using diodes or transistors acting as electronic switches.

There are three basic logic gates and they represent the three basic Boolean operations.
These gates are OR, AND and NO'T.

a. The OR operator and OR gate

Let us consider a real life situation. When do you use an umbrella? When it rains, isn’t
it? And of course, if it is too sunny. We can combine these two situations using a
compound statement like “If it is

raining or if it is sunny, we use an | Raining | Sunny Need Umbtella
umbrella”. Note down the use of or No No No
in this statement. The interpretation No Yes Yes
of this statement 'can be sh(.)wn as }1lr1 Yes No Yes
Table 2.8. The logical reasoning of the Yes Yes Yes

use of umbrella in our example very Table 2.8: Logical OR operation
much resembles the Boolean OR

operation.

The OR operator performs logical addition and the symbol used for this operation is
+ (plus). The expression A + B is read as A OR B. Table 2.9 is the truth table that
represents the OR operation. Assume that the variables A and B are the inputs
(operands) and A + B is the output (result). It is clear from the truth table that, if any
one of the inputsis 1 (True), the output will be 1 (True).

-

(=) @ @

Truth Table is a table that shows Boolean

A B A+B
operations and their results. It lists all possible 0 0 0
inputs for tbe given operation and their 0))
corresponding output. Usually these 1 0 .
operations consist of operand variables and . . "
operators. The operands and the operators

. Table 2.9 : Truth table of OR operation
together are called Boolean expression. Truth Y/ OR op

Table represents all possible values of the operands and the corresponding results
(values) of the operation. A Boolean expression with m operands (variables) and 7
operators require 2™ rows and m + 7 columns.

While designing logic circuits, the logic gate used to
implement logical OR operation is called logical OR gate.
Figure 2.5 shows the OR gate symbol in Boolean algebra. g

The working of this gate can be illustrated with an electronic Fig. 2. 5 : Logical OR gate
circuit. Figure 2.6 illustrates the schematic circuit of parallel

switches which shows the idea of an OR gate. Here A and B are two switches and Y is
a bulb. Each switch and the bulb can take either close (ON) or open (OFF) state. Now
let us relate the operation of the above circuit with the functioning of OR gate. Assume
that OF represents the logical LOW state (say 0) and ON represents the logical HIGH
(say 1) state. If we consider the state of switches A and B as input to the OR gate and
state of bulb as output of OR gate, then the truth table shown in Table 2.9 will desctibe
the operation of an OR gate. Thus the Boolean expression for OR gate can be written

as: Y=A+B
A
" —
————]
B
it L Lamp - OFF = 0
T+ @ Lamp -ON =1

Switch A - Open = 0(OFF), Closed = 1 (ON)
Switch B - Open = 0(OFF), Closed =1 (ON)

Fig. 2.6 : Circuit with two switches and a bulb for parallel connection

An OR gate can take more than two inputs. Let us see what will be the truth table,
Boolean expression and logical symbol for the three input OR gate.

2. Data Representation and Boolean Algebra

The truth table and the gate symbol shows
that, the Boolean expression for the OR gate
with three inputsis Y= A + B + C. Figure 2.7
shows the representation of OR gate with
three inputs. From the truth tables 2.9 and
2.10, we can see that the output of OR gate is
1if any inputis 1; and outputis 0 if and only
if all inputs are 0.

Fig 2.7 : OR gate

with three inputs

b. The AND operator and AND gate

We will discuss another situation to
understand the concept of AND Boolean
operation. Suppose you are away from home
and it is lunch time. You can have your food
only if two conditions are satisfied — (i) there
should be a hotel and (ii) you should have

enough money. Here also, we can make a compound A B A.B
statement like “If there is a hotel and if we have 0 0 0
money, we can have food”. Note the use of and in 0 1 0
this statement. Table 2.11 shows the logical reasoning 1 0 0
of getting food and it very much resembles the 1 1 1
Boolean AND operation.

The AND operator performs logical multiplication

A B C A+B+C
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Table 2.10 : Truth table for OR gate with 3

inputs
Hotel | Money Take Food

No No No
No Yes No
Yes No No
Yes Yes Yes

Table 2.11 : Logical AND operation

Table 2.12 : Truth table of AND
operation

and the symbol used for this operation is . (dot). The

expression A . Bis read as A AND B. Table 2.12is the
truth table that represents the AND operation. Assume
that the variables A and B are the inputs (operands)

and A . B is the output (result).

A —

A B

ot

Fig. 2.8 : Logical AND gate

While designing logic circuits, the logic gate used to implement logical AND operation
is called logical AND gate. Figure 2.8 shows the AND gate symbol in Boolean algebra.

@0

The working of this gate can be

illustrated with an electronic circuit A B
shown in Figure 2.9. This schematic v

circuit has two serial switches which _|+ Lamp— OFF =0
illustrates the idea of an AND gate. T- tamp~ON=1
Here A and B are two switches and Y
is a bulb. Each switch and the bulb Switch A —Open =0 {OFF), Closed = 1 (ON)

. Switch B — Open = 0 {OFF), Closed = 1 {ON})
can take cither close (ON) of open Fig. 2.9 : Circuit with two switches and a bulb for

(OFF) State- NOW].et us l'elate the Se;ﬂial connection
operation of the above circuit with
the functioning of AND gate. Assume that

OFF represents the logical LOW state (say 0) | A B C A.B.C
and ON represents the logical HIGH state (say | 0 0 0 0
1). If we consider the state of switches Aand | 0 1 0
B asinput to the AND gate and state of bulb [T 1 0 0
as output of AND gate, then the Boolean
. . 0 1 1 0
expression for AND gate can be written as:
Y=A.B 1 0 1 0 0
. 1 0 1 0
An AND gate can take more than two inputs.
Let us see what will be the truth table, Boolean 1 1 0 0
expression and logical symbol for three input | 1 1 1 1

inputs

shows that the Boolean expression for the
AND gate with three inputsis Y = A.B. C

Figure 2.10 shows the representation of AND
gate with three inputs. From Truth Tables 2.12
and 2.13, we can see that the output of AND
gate is 0 if any input is 0; and outputis 1 if and
only if all inputs are 1.

c. The NOT operator and NOT gate

Let us discuss another case to familiarise the Boolean NOT operation. Suppose you
jog everyday in the morning. Can you do it every day? If it rains, can you jog in the
morning? Table 2.14 shows all the possibilities of this
situation. It is quite similar to Boolean NOT operation. | Raining Jogging

Fig. 2.10 : AND gate with three inputs

It is a unary operator and hence it requires only one No Yes
operand. The NOT operator performs logical negation Yes No
and the symbol used for this operation is - (over-bar). Table 2.14: Logical NOT

_

~ ® @ 2. Data Representation and Boolean Algebra

The expression p isread as A bar . Itis also expressed A A
as Al and read as A dash. Table 2.15 is the truth table 0 1
that represents the NOT operation. Assume that the 1 0

vatiable A is the input (operand) and is the output =5 ———— INOT
(result). Itis clear from the truth table that, the output operation

will be the opposite value of the input. The logic gate used A
to implement NOT operation is NOT gate. Figure 2.11 A—DO—
shows the NO'T gate symbol.

Fig. 2.11 : NOT gate
ANOT gate is also called znverter. It has only one input

and one output. The input is always changed into its opposite state. If inputis 0, the
NOT gate will give its complement or opposite which is 1. If the input is 1, then the
NOT gate will complement it to 0.

Check yourself

Define the term Boolean variable.
A logic circuit is made up of individual units called

Name the logical opetatot/gate which gives high output if and only
if all the inputs are high.

Define the term truth table.

5. An AND operation performs logical and an OR
operation performs logical

6. Draw the logic symbol of OR gate.

2.6 Basic postulates of Boolean algebra

Boolean algebra being a system of mathematics, consists of certain fundamental laws.
These fundamental laws are called postulates. They do not have proof, but are made
to build solid framework for scientific principles. On the other hand, there are some
theorems in Boolean algebra which can be proved based on these postulates and laws.

Postulate 1: Principles of 0 and 1
IfA#0,then A =1 and if A#1,then A=0

Postulate 2: OR Operation (Logical Addition)
0+0=0 0+1=1 1+0=1 1+1=1

Postulate 3: AND Operation (Logical Multiplication)
0.0=0 0.1=0 1.0=0 1.1=1

Postulate 4: NOT Operation (Logical Negation or Compliment Rule)
0=1 1=0

Principle of Duality

When Boolean vatiables and/ ot values are combined with Boolean operators, Boolean
expressions are formed. X + Y and A + 1 are examples of Boolean expressions. The
postulates 2, 3 and 4 are all Boolean statements. Consider the statements in postulate
2. If we change the value 0 by 1 and 1 by 0, and the operator OR (+) by AND (.), we
will get the statements in postulate 3. Similarly, if we change the value 0 by 1 and 1 by
0, and the operator AND (.) by OR (+) in statements of postulate 3, we will get the
statements of postulate 2. This concept is known as principle of duality.

The principle of duality states that for a Boolean statement, there exists its dual form,
which can be derived by

(i) changing each OR sign (+) to AND sign (.)
(if) changing each AND sign (.) to OR sign (+)
(iii) replacing each 0 by 1 and each 1 by 0

2.7 Basic theorems of Boolean algebra

There are some standard and accepted rules in every theory. The set of rules are known
as axtoms of the theoty. A conclusion can be detived from a set of presumptions by
using these axioms or postulates. This conclusion is called law or theorem. Theorems
of Boolean algebra provide tools for simplification and manipulation of Boolean
expressions. Let us discuss some of these laws or theorems. These laws or theorems
can be proved using truth tables and Boolean laws that are already proved.

2.7.1 Identity law
If Xis a Boolean variable, the law states that:
) 0+X=X i) 1+X=1
@ 0.X=0 v) 1.X=X
Statements (1) and (if) are known as additive identity law; and statements (iii) and (iv)

are called multiplicative identity. Also note that, statement (iv) is the dual of (i) and
vice versa. Similarly, statements (i) and (iii) are dual forms. The truth tables shown in

Tables 2.16(a), 2.16(b), 2.17(a) and 2.17 (b) prove these laws.

—_

™ ® ® 2. Data Representation and Boolean Algebra

0 X 0+X 1| X 1+X
01 0 0 110 1
0 1 1 1 1 1
Table 2.16 (a) : Additive Identity law Table 2.16 (b) : Additive Identity law

Table 2.16 (a) shows that columns 2 and 3 are the same and it is proved that 0 + X =
X. Similarly, columns 1 and 3 of table 12.16 (b) are the same and hence the statement

1+X=1 is true.

0 | X 0.X 1(X 1.X
0 [0 0 110 0
0 1 0 111 1

Table 2.17(a) : Multiplicative ldentity law Table 2.17(b) : Multiplicative Identity law

Table 2.17 (a) shows that columns 1 and 3 are the same and it is proved that 0 . X = 0.
Similarly, columns 2 and 3 of Table 2.17 (b) are the same and hence the statement
1. X=X1s true.

2.7.2 Idempotent law
The idempotent law states that: (1) X+ X =X
and (I)X.X=X
If the value of X is 0, the
statements are true, X X X+ X X X X.X
because 0 + 0 = 0 0 0 0 0 0 0
(Postulate 2) and 0.0 =0
(Postulate 3). Similarly the
statements will be true
when the value of Xis 1. Truth Tables 2.18 (a) and 2.18 (b) shows the proof of these
laws. Also note that the statements are dual to each other.

1 1 1 1 1 1
Table 2.18 (a) : Idempotent law Table 2.18 (b) : Idempotent law

2.7.3 Involution law

This law states that: ; =X

Let X =0, then x =1 (Postulate 4); and if we take its X — =
compliment, x = 1= 0, which is same as X. The 0)1(f)(
statement will also be true, when the value of Xis 1. N 5 N
Columns 1 and 3 of Table 2.19 show that y =X. Table 2.19 : Involution law

-

= ® ® Compute ence

2.7.4 Complimentary law
The complimentaty law states that: () X + X =1
and ()X.X =0
If the value of X is 0, then X becomes 1. Hence, X + X becomes 0 + 1, which results
into 1 (Postulate 2). Similarly when X'is 1, X will be 0. The truth tables 2.20 (a) and

2.20 (b) show the proof of these laws taking all the possibilities. Also note that the
statements are dual to each other.

X | X | X+X X X X.X
0 1 1 0 1 0
1 0 1 1 0 0
Table 2.20 (a) : Complimentary Table 2.20 (b) : Complimentary
law law

2.7.5 Commutative law

Commutative law allows to change the position of variables in OR and AND
operations. If X and Y are two variables, the law states that:

HX+Y=Y+X
and (i) X.Y=Y.X
The truth table shown in Tables 2.21 (a) and 2.21 (b) prove these statements.

X Y X+Y Y+X X Y XY Y.X
0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 0
1 0 1 1 1 0 0 0
1 1 1 1 1 1 1 1
Table 2.21 (a) : Commutative law Table 2.21 (b) : Commutative law

The law ensures that order of the operands for OR and AND operations does not
affect the output in each case.
2.7.6 Associative law

In the case of three operands for OR and AND operations, associative law allows
grouping of operands differently. If X, Y and Z are three variables, the law states that:
@) X+(Y+2Z)=(X+Y)+7Z
and @WX.(Y.Z)=(X.Y).Z

_

~ ® ® 2. Data Representation and Boolean Algebra

The truth tables shown in Tables 2.22(a) and 2.22(b) prove these statements.

X Y Z X+Y Y+X | X+(Y+72Z) X+Y)+Z
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 1 0 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 1 1 1 1

Table 2.22(a) : Associative law 1
In Table 2.22(a), columns 6 and 7 show that X + (Y + Z) = (X + Y) + Z. Columns 6
and 7 of Table 2.22(b) show the validity of the experience X.(Y.Z)=(X.Y).Z

.
N
N

X.Y X.(Y.Z) | (X.

0

ol Revll Henll fanll Nevll Ranl Kaw)

e Ll Bl I (=0 E=0 =N Rl I
S = =R R = =
= =] I = R E= I k=N B\
—lo|lolo|l~|lo|lo|o
—lo|lolo|lo|lo|lo

wooooooo\:ﬁ>

1
Table 2.22(b) : Associative law 2

Associative law ensures that the order and combination of variables in OR (logical
addition) or AND (logical multiplication) operations do not affect the final output.

2.7.7 Distributive law

Distributive law states that Boolean expression can be expanded by multiplying terms
as in ordinary algebra. It also supports expansion of addition operation over
multiplication. If X, Y and Z are variables, the law states that:

HX.(Y+Z)=X.Y+X.Z
and HX+Y.Z=(X+Y).(X+2)

G

The following truth tables prove these statements:

X Y Z | Y+Z X.(Y+Z) XY X.Z XY +XZ
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

Table 2.23(a) : Distribution of Multiplication over Addition
Columns 5 and 8 of Table 2.23(a) show that X.(Y+Z)=X.Y+X.Z

X Y Z Y.Z X+Y.Z | X+Y | X+Z | (X+Y).(X+Z)
0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

Table 2.23(b) : Distribution of Addition over Multiplication

Columns 5 and 8 of Table 2.23(b) showthat X +Y.Z=(X+Y).(X+2Z)

We are familiar with the first statement in ordinary algebra. To remember the second
statement of this law, find the dual form of the first.

2.7.8 Absorption law

Absorption law is a kind of distributive law in which two variables are used and the
result will be one of them. If X and Y are variables, the absorption law states that:

@) X+(X.Y)=X
and (X.(X+Y)=X

_

2. Data Representation and Boolean Algebra

The truth tables shown Tables 2.24(a) and 2.24(b) prove the validity of the statements
of absorption law.

X1Y |[X.Y X+(X\Y) X Y X+Y | X.(X+Y)
0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0
1 0 0 1 1 0 1 1
1 1 1 1 1 1 1 1

Table 2.24 (a) : Absorption law

Columns 1 and 4 of Table 2.24(a) and columns 1 and 4 of Table 2.24(b) show that the
laws are true.

Table 2.24 (b) : Absorption law

Table 2.25 depicts all the Boolean laws we have discussed so far.

No.| Boolean Law Statement 1 Statement 2
1 | Additive Identity 0+X=X 1+X=1
2 | Multiplicative Identity| 0 . X =0 1.X=X
3 | Idempotent Law X+X=X X.X=X
4 | Involution Law x=X
5 | Complimentary Law | X+ x =1 X.x =0
6 | Commutative Law | X+Y=Y+X X.Y=Y.X
7 | Associative Law X+ (Y+2)=(X+tY)+Z [X . (Y.Z)=(X.Y).Z
8 | Distributive Law X A(Y+Z)=X.Y+X.Z | X+ (Y.Z)=(XtY).(X+2)
9 | Absorption Law X+(X.Y)=X X.(X+Y)=X

Table 2.25 : Boolean laws

The laws we discussed have been proved using truth tables. Some of them can be
proved by applying some other laws. This method of proof is called algebraic proof.
Tet us see some of them.

i. To prove that X. (X +Y) =X - Absorption law

LHS =X.(X+Y)
=X.X+X.Y (Distribution of multiplication over addition)
=X+X.Y (Idempotent law)
=X.(1+Y) (Distribution of multiplication over addition)

* ® ® Computer Science - XI

-X.1 (Additive identity)
=X (Multiplicative identity)
= RHS

ii. To prove that X + (X .Y) =X — Absorption law
LHS =X+(X.Y)

=X.1+X.Y (Multiplicative identity)

=X.(1+Y) (Distribution of multiplication over addition)
=X.1 (Additive identity)

=X (Multiplicative identity)

= RHS

iii. To prove that X+ (Y .Z) = (X+Y) . (X+Z) — Distributive Law

Let us take the expression on the RHS of this statement.

X+Y). (X+7)
=X+Y). X+ X+Y) . Z (Distribution of multiplication over addition)
=X.X+Y)+Z.X+Y) (Commutative law)

=X.X+X.Y+Z.X+Z2.Y (Distribution of multiplication over addition)
=X+X.Y+Z.X+7Z.Y (Idempotent law)

=X 1+X.Y+Z.X+Z.Y (Multiplicative identity)
=X.1+YV)+7Z.X+2Z.Y (Distribution of multiplication over addztion)

=X.1+2.X+72.Y (Additive identity)

=X.1+Z)+72.Y (Distribution of multiplication over addition)
=X.1+72.Y (Additive identity)

=X +Y.Z (Multiplicative identity and Commutative law)
=LHS

The expression obtained is the LHS of the given statement. Thus the theorem is proved.

2. Data Representation and Boolean Algebra

2.8 De Morgan’s theorems

Augustus De Morgan (1806 —1871), a famous logician and mathematician of University
College, London proposed two theorems to simplify complicated Boolean expressions.
These theorems are known as De Morgan’s theorems. The two theorems are:

@) X+Y =X -
(i) XY= xty
Literally these theorems can be stated as

[=<]

i) “the complement of sum of Boolean variables is equal to product of their
individual complements” and

i) “the complement of product of Boolean variables is equal to sum of their
individual complements”.

Algebraic proof of the first theorem
We have to prove that, X+Y = x .y

Letusassume that,Z=X+Y _ (1)
Then, Z=X+Y ___ (2

We know that, by complimentary law, the equations (3) and (4) are true.
Z+72=1 _____(3)
7.2 =0 _____4

Substituting expressions (1) in (3) and (2) in (4), we will get equations (5) and (6).
X+ +(x+y)=1 _____ (5
X+Y).(x+Y) =0 ____ (0
For the time being let us assume that De Motgan’s first theorem is true. If so, (X +Y)
in equations (5) and (6) can be substituted with (x . v). Thus equations (5) and (6) can
be modified as follows:
X+V+(X.Y)=1 ______ (7
X+Y).(X.Y)=0 ______(8
Now we will prove equations (7) and (8) separately. If they are correct, we can conclude

that the assumptions we made to form those equations are also correct. That is, if
equations (7) and (8) are true, De Morgan’s theorem is also true.

Consider the LHS of equation (7),

X+YV)+(X.Y) =X+Y+X).X+Y+Y) (Distributive Law)
=X+ X + Y). X+Y+ Y) (Associative Law)
=(1+Y).X+1) (Complimentary Law)

JERE

* ® ® Computer Science - XI

=1.1 (Additive Identity)
=1
=RHS

Now; let us consider the LHS of equation (8),

X+Y).(x.v) =.X.Y)+(.X.Y) (Distributive Law)
=X. X.Y)+(.Y.X) (Associative Law)
=0.Y)+0.X) (Complimentary Law)
=0+0 (Multiplicative 1dentity)
=0
=RHS

We have algebraically proved equations (7) and (8), which mean that De Morgan’s first
theorem is proved. The theorem can also be proved using truth table, but it is left to
you as an exercise.

Algebraic proof of the second theorem

We have to prove that, X. Y=x +

Letusassume that, Z=X.Y (1)
Then, 7 = X.Y 2
We know that, by complimentary laws the equations (3) and (4) are true.

Z+7=1___ (3
Z.;7 =0 4

Substituting expressions (1) in (3) and (2) in (4), we will get the expressions (5) and (6).
X.V+EV=1 ()
(X.Y). (X¥)=0 ©)

For the time being let us assume that De Morgan’s second theorem is true. If so,
(X.Y)in equations 5and 6 can be substituted with (X +7). Thus equations (5) and
(6) can be modified as follows:

XN+ (x+ty)=1 — ()
X.Y).(x+y)=0 (8)
Now we will prove equations (7) and (8) separately. If they are correct, we can conclude

that the assumptions we made to form those equations are also correct. That is, if
equations (7) and (8) are true, De Morgan’s theorem is also true.

_

2. Data Representation and Boolean Algebra

Consider the LHS of equation (7),

X.YV)+(xt+ty) =(xty)+X.Y) (Commutative Law)
=(xty tX).(x+y +Y) (Distributive Law)
=(X+X+Yy).(XtTYy 1Y) (Associative Law)

=1+y).(x+t1D (Complimentary Law)
=1.1 (Addstive 1dentity)
=1

=RHS

Now; let us consider the LHS of equation (8),
X.Y).(X+Y) =X.Y.X)+X.Y.y) (Distributive Law)
=X.X.Y)+X.Y.y) (Associative Law)

=0.Y)+X.0 (Complimentary Law)
=0+0 (Multiplicative 1dentity)
=0

=RHS

We have algebraically proved equations (7) and (8), which mean that De Morgan’s
second theorem is proved. The theorem can also be proved using truth table, but it is
left to you as an exercise.

We can extend Demorgan's theorem for any number of variables
as shown below:

A+B+C+D+.... S A.B-C - D oo

ABCD.... A+ B+C +D+...

Although the identities above represent De Morgan's theorem, the
transformation is more easily performed by following the steps given below:

(i) Complement the entire function
(ii) Change all the ANDs (.) to ORs (+) and all the ORs (+) fo ANDs (.)
(iii) Complement each of the individual variables.

This process is called demorganisation and simply demorganisation is ' Break
the line, change the sign'.

—

1. Find the dual of Boolean expression A.B+B.C=1
. 2. Name the law which states that A+A=A.

(a) Commutative law (b) Idempotent Law (c) Absorption Law
3. State De Morgan's theorems.

2.9 Circuit designing for simple Boolean expressions

By using basic gates, circuit diagrams can be designed for Boolean expressions. We
have seen that the Boolean expressions A.B is represented using an AND gate, A+B
is represented using an OR gate and A is represented using a NOT gate. Let us see
how a circuit is designed for other Boolean expressions.

Consider a boolean expression A +B, whichis " {>C i P

an OR operation with two input and firstinput ,
is inverted. So circuit diagram can be drawn as

shown in Figure 2.12.

Example: Construct alogical circuit for

Boolean expression (X, Y)=X.Y+ v

Fig213:f(X, Y)=XY+ Y

Fig2.12 : f(4, B) = A+B

Example: Construct a logical expression

forf(a,b)=(a+b).(a +b)

(0 — (a +b)
b
>(u+b).(& +b)

@ +b)

Q

Fig2.14:f(a b)=(@+b) .(a +b)

Example: Construct logical circuit for the Boolean expression , .b +a.y,

o

Fig2.15 :f(a, b) = 4 .b +ay

_

 ® ® 2. Data Representation and Boolean Algebra

2.10 Universal gates

The NAND and NOR gates are called universal gates. A universal gate is a gate which
can implement any Boolean function without using any other gate type. In practice,
this is advantageous, since NAND and NOR gates are economical and easier to
fabricate and are the basic gates used in most of IC digital logic families.

2.10.1 NAND gate

This is an AND gate with its output inverted by a NOT gate. The logical circuit
arrangement is shown in Figure 2.16.

\ A.B Y = (A.B)
Note that A and B are the inputs of } DC
AND gate and its output is (A.B). The
output of AND gate is inverted by an g 2.16 - Circuit realisation of NAND gate
inverter (NOT gate) to get the resultant output Y as

(A.B) . So the logical expression for a NAND gate is A B Y=(A.B)
- 0 0 1
(A.B) . From the truth table shown as Table 2.26, we) . .
can see that output of a NAND gate is 1 if any one
. . . . 1 0 1
of the input is 0. It produces output 0 if and only if) . 0

all inputs are 1. This is the inverse operation of an
AND gate. So we can say that a NAND gate is an
inverted AND gate.

Table 2.26 : NAND truth table

): (4.B)

Fig. 2.17 : NAND gate

A

The logical symbol of NAND gate is shown in Figure
2.17. Note that the NAND symbol is an AND symbol B
with a small bubble at the output. The bubble is
sometimes called an invert bubble.

2.10.2 NOR gate

This is an OR gate with its output 4 J\A +B >CY =(A+B)
inverted by a NOT gate. The logical 5B j_/

glrlc;ut arrangement is shown in Figure Fig. 2.18 : Circuit realisation of NOR gate

Note that A and B are the input of OR gate and its output is (A+B). The output of

OR gate is inverted by an inverter (NOT gate) to get resultant output as (A +B). So

the logical expression for a NOR gate is (A +B). Let us see the truth table of the two
mput NOR gate.

—— |

From the truth table shown on as Table 2.27, we A B Y= (A +B)
can see that output of aNOR gate is 1 if and only if 0 0 1

all inputs are 0. If any one of the inputs is 1 it 0 1 0
produces an output 0. This is the inverse operation

of an OR gate. So we can say that ¢ NOR gate is ! 0 0

an inverted OR gate. Vsl 22 bR e Qunte

The logical symbol of NOR gate is shown in Figure 2.19.

Note that the NOR symbol is an OR symbol with a A) A+B)
small bubble at the output. B

2.10.3 Implementation of basic gates using Fig. 2.19 : NOR gate
NAND and NOR

We can design all basic gates (AND, OR and NOT) using NAND or NOR gate alone.
Let us see the implementation of basic gates using NAND gate.

NOT gate using NAND gate

We can implement a NOT gate (inverter) using a NAND by applying the same signal
to both inputs of a NAND gate as shown in Figure 2.20.

A—|: (4.4) =4 4 |> A

Fig. 2.20 : NOT gate using NAND gate

Proof:
A NAND A = (ﬁ)

= A SinceAA=A A AA (A._A) N

The truth table shown as Table 2.28 is the 0 0 1 1
roof for obtaining NO'T egate using NAND

p & gate using 1Tctble 228 1 Prodf. usi;QQ tru tabg

gate.

AND gate using NAND gate

We can implement an AND gate by using a NAND gate followed by another NAND
gate to invert the output as shown in Figure 2.21.

A — B A.B 4— A.B
B — B=]

Fig. 2.21 : AND gate using NAND gate

_

= ® @ Computer Science - X 2. Data Representation and Boolean Algebra

Proof
We know that A NAND B = (E)
(ANAND B) NAND (ANANDB) = (AB) NAND (A B)

= ((AB).(AB))
= ((AB)) Since AA=A

= AB Since (Z) =A

Table 2.29 shows the proof for obtaining AND gate using NAND gate with the help
of the truth table.

Al B | AB|@aB | @B).AB) ((AB).(AB))

0 0 0 1 1 0

0 1 0 1 1 0

1 0 0 1 1 0

1 1 1 0 0 1

Table 2.29 : Proof using truth table
OR gate using NAND gate
The OR gate is replaced by a NAND gate with all its inputs complemented by NAND

gate inverters as shown in Figure 2.22.

7
A_E:>)—L (A.B) =A+B A A+B
B
o
Proof: Fig. 2.22 : OR gate using NAND gate
ANAND A = (AA)
= A

Similarly, BNAND B =3B

Therefore, (A NAND A) NAND (B NAND B)

3 NAND [

(A.B)

+F Since (WB)=3 45

>

=A+B Since (X) =A

Table 2.30 shows the proof for obtaining OR gate using NAND gate with the help of

truth table.

A|B|A|B|a-B| aB) | A+B
oo 1]1] 1 0 0
ol1f{1]o0o] o 1 1
tlolof|l1] o 1 1
t{1]o]lo] o 1 1

Table 2.30 : Proof using truth table

Thus, the NAND gate is a universal gate since it can implement AND, OR and NOT
operations. Now let us see implementation of basic gates by using another universal
gate, the NOR gate.

NOT gate using NOR gate

We can implement a NOT gate (inverter) using a NOR by applying the same signal to
both inputs of a NOR gate as shown in Figure 2.23.

Proof: A+4) =4 [: i
A A
A NORA = (A+A)

= A Since A+A=A Fig 2.23 : NOT gate using NOR gate

Table 2.31 shows the proof for obtaining —
NOT gate using NOR gate with the help of A [AA| (A+A) A
1

truth table. 0 0 1
1 1 0 0

Table 2.31 : Proof using truth table

OR gate using NOR gate

We can implement an OR gate by using a
NOR gate followed by another NOR gate to invert the output as shown in Figure
2.24.

A (4+B) A+B A ' A+B
B

Fig 2.24: OR gate using NOR gate

Proof:
We know that ANOR B =(A+B)
(ANOR B) NOR (A NOR B) =(A+B)NOR (A+B)

~ (A+B)+(A+B))

_

A ® @ 2. Data Representation and Boolean Algebra

=((A+B) Since A+A=A

=A+B Since (4) =A

Table 2.32 shows the proof of obtaining OR gate using NOR gate with the help of the
truth table.

A B [A+B| (A+B)| (A+B)+ (AB) ((A+B).(A+B))

0 0 0 1 1 0

0 1 1 0 0 1

1 0 1 0 0 1

1 1 1 0 0 1

Table 2.32 : Proof using truth table
AND gate using NOR gate
The AND gate is replaced by a NOR gate with all its inputs complemented by NOR

gate inverters as shown in Figure 2.25.
A — A.B
B—
B _w
Fig. 2.25 : AND gate using NOR gate

Proof
ANOR A = (A+A)=A
Similarly, BNOR B = (B+B)=18B
Therefore, (ANOR A)NOR (BNORB) = A NOR B
= (A+B)
=(A).(g) Since(A+B)=A.B
=AB Since X =A
Thus, the NOR gateisalsoa | A| B | A | B |A+B (A+B) A.B
universal gate since it can
implement the AND, OR and 010 1 1 1 0 0
NOT operations. Table 2.33 0] 1 1 0 1 0 0
represents the proof for | 1 | 0 0 1 1 0 0
obtaining AND gate using [1 [1 [o | o 0 1 1

NOR gate with the help of
truth table. Table 2.33 : Proof using truth table

—

SEE

Check yourself

1. Draw logic circuits for the Boolean expression X+Y .

Which gates are called universal gates?

3. gate produces low (0) output if any one of the input is
high(1)
(a)OR (b) AND (c) NAND (d) NOR

4. ANANDB=
@A+B () AB ©(A+B) (@) (AB)

< Let us sum up

Different methods of data representation were discussed in this chapter. Before
discussing data representation of numbers, we introduced different number
systems and their conversions. After the discussion of integer and floating
point number representation we have mentioned different methods for
character, sound, image and sound data representation. We have also discussed
the concept of Boolean algebra in detail including logical operators, logic gates
and laws of Boolean algebra. We concluded the chapter by introducing methods
for designing basic logic circuits and by discussing the importance of universal
gates in circuit designing,

"% Learning outcomes

After the completion of this chapter the learner will be able to
e cexplain the characteristics of different number systems.

e convert one number system to another.

o perform binary arithmetic.

e represent numbers and characters in computer memoty.

o list the formats of sound, image and video file formats.

e identify the concept of Boolean algebra.

o explain the working of logical operators and logic gates with the help of examples.
e state and prove basic postulates and laws of Boolean algebra.

e design circuits for simple Boolean expressions.

o implement basic gates using universal gates.

" e |

 Sample questions [T

Very short answer type

1. What s the place value of 9 in (296), ¢

2. Find octal equivalent of the decimal number 55.

3. Find missing terms in the following series
2) 101, 1010,, 1111,
b) 15, , 16, 17,
Q) 18,,1A,,1C,, | .
If (X), - (1010), = (1000), then find X.

5. Name the coding system that can represent almost all the characters used in the
human languages in the world.

6. Find out the logical statement(s) from the following .
a) Why are you late?
b) Will you come with me to market ?
¢) India is my country.
d) Go to class room.
7. List three basic logic gates.
8. Which gate is called inverter?
9. List two complimentarity Laws.

10. The Boolean expression (A +B) represents gate.
a) AND b) NOR c) OR d) NAND
Short answers type

1. Define the term data representation.
2. What do you mean by a number system? List any four number systems.

3. Convert the following numbers into the other three number systems:

a) (125), b) 98 c) (101110), d) (A2B),,
4. Find the equivalents of the given numbers in the other three number systems.
a) (TE1), b) (207.13),) 93.25 d) (10111011.1101),

5 I X), =), = (4),, = 28),, Then find X, Y and Z.
6. Arrange the following numbers in descending order

a) (101),, b) (110),, c) (111000), d) (251),
7. Find X, if X), = (10111), + (11011), - (11100),

* ® ® Computer Science - XI

8.
9.

10.

11.
12.
13.
14.

15.

16.

17.

18.

What are the methods of representing integers in computer memory?

Represent the following numbers in sign and magnitude method, 1’s complement
method and 2’s complement method

a)-19 b) +49) -97 d)-127

Find out the integer which is represented as (10011001), in sign and magnitude
method.

Explain the method of representing a floating point number in 32 bit computer.
What are the methods of representing characters in computer memory?

Briefly explain the significance of Unicode in character representation.
Match the following:

1) Ifanyinputis 1 outputis 1 a) NAND
i) Ifaninputis O outputis 0 b) OR

i) Ifanyinputis 0 outputis 1 c) NOR
iv) Ifanyinputis 1 outputis 0 d) AND

Find dual of following Boolean expressions

) X.Y+Z b) AC+AI+A.C ¢ (A+0).(A1.A)
Find complement of following Boolean expressions

2) AB b) ABTCD

Construct logic circuit for the following Boolean expression.
() ab tc (ii) ab+; b+ 51 (i) (a+5)-(a +b)

Why are NAND and NOR gates called universal gates? Justify with an example.

Long answer type

1.

Al AN

o

Briefly explain different methods for representing numbers in computer memory.
Briefly explain different methods for representing characters in computer memory.
What are the file formats for storing image, sound and video data?

Give logic symbol, Boolean expression and truth table for three input AND
gate.

Prove that NOR gate is a universal gate by implementing all the basic gates.

_

