‘ Key concepts

Concept of data types
C++ data types
Fundamental data types
Type modifiers
Variables

Operators

Arithmetic

Relational

Logical

Input/Output
Assignment

Arithmetic assignment
Increment and decrement
Conditional

sizeof

Precedence of operators
Expressions

o Arithmetic
o Relational
o Logical

Type conversion

Statements

o Declaration

o Assignment

o Input /Output

Structure of a C++ program
o Pre-processor directives
o Headerfiles

o Concept of namespace
o The main() function

o A sample program

Guidelines for coding

O O O OO0 O O O O O

Data Types and
Operators

In the previous chapter we familiarised ourselves
with the IDE used for the development of C++
programs and also learnt the basic building blocks
of C++ language. As we know, data processing
is the main activity carried out in computers. All
programming languages give importance to data
handling. The input data is arranged and stored
in computers using some structures. C++ has a
predefined template for storing data. The stored
data is further processed using operators. C++
also makes provisions for users to define new data

types, called user-defined data types.

In this chapter, we will explore the main concepts
of the C++ language like data types, operators,
expressions and statements in detail.

6.1 Concept of data types

Consider the case of preparing the progress card
of a student after an examination. We need data
like admission number, roll number, name,
address, scores in different subjects, the grades
obtained in each subject, etc. Further, we need to
display the percentage of marks scored by the
student and the attendance in percentage. If we
consider a case of scientific data processing, it
may require data in the form of numbers
representing the velocity of light (3X10* m/s),
acceleration due to gravity (9.8 m/s), electric
charge of an electron (-1.6X10™7") etc.

* ® ® Computer Science - XI

From these cases, we can infer that data can be of different types like character,
integer number, real number, string, etc. In the last chapter we saw that any valid
character of C++ enclosed in single quotes represents character data in C++.
Numbers without fractions represent integer data. Numbers with fractions
represent floating point data and anything enclosed in double quotes represents a
string data. Since the data to be dealt with are of many types, a programming
language must provide ways and facilities to handle all types of data. C++ provides
facilities to handle different types of data by providing data type names. Data
types are the means to identify the nature of the data and the set of operations that
can be performed on the data. Various data types are defined in C++ to differentiate
these data characteristics.

In Chapter 4, we used variables to refer data in algorithms. Variables are also used
in programs for referencing data. When we write programs in the C++ language,
variables are to be declared before their use. Data types are necessary to declare
these variables.

6.2 C++ data types

C++ provides a rich set of data types. Based on nature, size and associated
operations, they are classified as shown in Figure 6.1. Basically, they are classified
into fundamental or built-in data types, derived data types and user-defined data

types.

C++ Data Types

User-defined Fundamental Derived
Data Types Data Types Data Types

Integral Floating Point
Data Types Data Types

Fig 6.1 : Classification of C++ data types

Fundamental data types

Fundamental data types are defined in C++ compiler. They are also known as built-
in data types. They are atomic in nature and cannot be further decomposed of. The
five fundamental data types in C++ are char, int, float, double and void.
Among these, int and char comes under integral data type as they can handle

6. Data Types and Operators

only integers. The numbers with fractions (real numbers) are generally known as
floating type and are further divided into £loat and double based on precision
and range.

User-defined data types

C++ is flexible enough to allow programmers to define their own data types.
Structure (struct), enumeration (enum), union, class, etc. are examples for such

data types.
Derived data types

Derived data types are constructed from fundamental data types through some
grouping or alteration in the size. Arrays, pointers, functions, etc. are examples of

derived data types.
6.3 Fundamental data types

Fundamental data types are basic in nature. They cannot be further broken into
small units. Since these are defined in compiler, the size (memory space allocated)
depends on the compiler. We use the compiler available in GCC and hence the size
as well as the range of data supported by the data type are given accordingly. It may
be differentif you use other compilers like Turbo C++ IDE. The five fundamental
data types are described below:

int data type (for integer numbers)

Integers are whole numbers without a fractional part. They can be positive, zero or
negative. The keyword int represents integer numbers within a specific range. GCC
allows 4 bytes of memory for integers belonging to int data type. So the range of
values that can be represented by int data type is from -2147483648 to
+2147483647. The data items 6900100, 0, -112, 17, -32768, +32767, etc. are
examples of int data type. The numbers 2200000000 and -2147483649 do not
belong to int data type as they are out of the allowed range.

char data type (for character constants)

Characters are the symbols covered by the character set of the C++ language. All
letters, digits, special symbols, punctuations, etc. come under this category. When
these characters are used as data they are considered as char type datain C++. We
can say that the keyword char represents character literals of C++. Each char
type data is allowed one byte of memory. The data items A, “+°, \t’,°0’, etc.
belong to char data type. The char data type is internally treated as integers,
because computer recognises the character through its ASCII code. Character data
is stored in the memory with the corresponding ASCII code. As ASCII codes are
integers and need to be stored in one byte (8 bits), the range of char data type is
from -128 to +127.

-

@ < @

float data type (for floating point numbers)

Numbers with a fractional part are called floating point numbers. Internally, floating-
point numbers are stored in a manner similar to scientific notation. The number
47281.97 is expressed as 0.4728197X10° in scientific notation. The fitst part of the
number, 0.4728197 is called the mantissa. The power 5 of 10 is called exponent.
Computers typically use exponent form (I notation) to represent floating-point
values. In E notation, the number 47281.97 would be 0.4728197E5. The part of the
number before the E is the mantissa, and the part after the E is the exponent. In
C++, the keyword £loat is used to denote such numbers. GCC allows 4 bytes of
memoty for numbers belonging to float data type. The numbers of this data
type has normally a precision of 7 digits.

double data type (for double precision floating point numbers)

In some cases, floating point numbers require more precision. Such numbers are
represented by double data type. The range of numbers that can be handled by
float type is extended by this data type, because it consumes double the size of
float datatype. In C++,itis assured that the range and precision of double will
be at least as big as £loat. GCC reserves 8 bytes for storing a double precision
value. The precision of double data type is generally 15 digits.

void data type (for null or empty set of values)

The data type void is a keyword and it indicates an empty set of data. Obviously it
does not require any memory space. The use of this data type will be discussed in
detail in Chapter 10.

The size of fundamental data types decreases in the order double, float, int
and char.

6.4 Type modifiers

Have you evet seen travel bags that can alter its size/volume to include extra bit of
luggage? Usually we don’t use that extra space. But the zipper attached with the bag
helps us to alter its volume either by increasing it or by decreasing. In C++ too, we
need data types that can accommodate data of slightly bigger/smaller size. C++
provides data type modifiers which help us to alter the size, range or precision.
Modifiers precede the data type name in the variable declaration. It alters the range
of values permitted to a data type by altering the memory size and sign of values.
Important modifiers are signed, unsigned, long and short.

_

) ® = Computer Science - X| 6. Data Types and Operators

The exact sizes of these data types depend on the compiler and computer you are
using, It is guaranteed that:

* adouble is atleastas bigasa float.

* a long double is at least as big as a double.
Each type and their modifiers are listed in Table 6.1 (based on GCC compiler) with

their features.
Name Description Size Range
char Character 1 byte |signed:-128to 127
unsigned:0to 255
short int| Short Integer 2 bytes |signed:-32768 to 32767
(short) unsigned:0to 65535
int Integer 4 bytes |signed:-2147483648 to 2147483647
unsigned: 0to 4294967295
long int Long integer 4 bytes |signed:-2147483648 to 2147483647
(Long) unsigned: 0to 4294967295
+/-38 +/-38 1]
float Floating point number 4 bytes '3'4XI(_) to +3',4 x .10 Wlt 5
approximately 7 significant digits
doule Double precision 8 bytes -1.7 x '10+/'308 to +17 .X' 10”’30.8 Wlth
floating point number approximately 15 significant digits
long s +/-4932 +/-4932 N\
double Long double precision | 5 bytes -3.4 x 10752 to +3.4 x10"**** With
floating point number approximately 19 significant digits

Table 6.1: Data type and type modifiers

The values listed in Table 6.1 are only sample values to
give you a general idea of how the types differ. The
values for any of these entries may be different onyour
system.

6.5 Variables

Memory locations are to be identified to refer data. Variables are the names given
to memory locations. These are identifiers of C++ by which memory locations are
referenced to store or retrieve data. The size and nature of data stored in a variable
depends on the data type used to declare it. There are three important aspects for a
variable.

QICIC

i. Variable name

Itis a symbolic name (identifier) given to the memory location through which the
content of the location is referred to.

ii. Memory address

The RAM of a computer consists of collection of cells each of which can store one
byte of data. Every cell (or byte) in RAM will be assigned a unique address to refer
it. All the variables are connected to one or more memory locations in RAM. The
base address of a variable is the starting address of the allocated memory space. In
the normal situation, the address is given implicitly by the compiler. The address is
also called the L-value of a variable. In Figure 6.2 the base address of the variable
Num is 1001.

iii. Content

The value stored in the location is called the content of the variable. This is also
called the R-value of the variable. Type and size of the content depends on the data

type of the variable. 1001 1002 1003 1004
Figure 6.2, shows the memory representation of a variable. Here 1{8
the variable name is Num and it consumes 4 bytes of memory at Num

memory addresses 1001, 1002, 1003 and 1004. The content of ~ Fig. 6.2 - Memory
representation

this variable is 18. That is the I.-va/we of Num is 1001 and the of a Variable
R-value is 18.

6.6 Operators

Operators are tokens constituted by predefined symbols that trigger computer to
carry out operations. The participants of an operation are called operands. An
operand may be either a constant or a variable.

For example, a+b triggers an arithmetic operation in which + (addition) is the
operator and a, b are operands. Operators in C++ are classified based on various
criteria. Based on number of operands required for the operation, operators are
classified into three. They are unary, binary and ternary.

Unary operators

A unary operator operates on a single operand. Commonly used unary operators
are unary+ (positive) and unary— (negative). These are used to represent the sign of
a number. If we apply unary+ operator on a signed number, the existing sign will
not change. If we apply unary— operator on a signed number, the sign of the existing

.

6. Data Types and Operators

number will be negated. Fxamples of the use | yarjable | Unary+ | Unary-
of unary operators are given in Table 6.2. X . -
Some other examples of unary operators are 8 8 -8
increment (++) and decrement (—=) operators. 0 0
Binary operators -9 -9 9

Binary operators operate on two operands.
Arithmetic operators, relational operators,
logical operators, etc. are commonly used binary operators.

Table 6.2 : Unary operators

Ternary operator

Ternary operator operates on three operands. The typical example is the conditional
operator (?:).

The operations triggered by the operators mentioned above will be discussed in
detail in the coming sections and some of them will be dealt with in Chapter 7.

Based on the nature of operation, operators are classified into arithmetic, relational,
logical, input/output, assignment, short-hand, increment/decrement, etc.

6.6.1 Arithmetic operators

Arithmetic operators are defined to perform basic arithmetic operations such as
addition, subtraction, multiplication and division. The symbols used for this are +,
—,*and / respectively. C++ also provides a special operatot, % (modulus opetator)
for getting remainder during division. All these operators are binary operators.
Note that + and — are used as unary operators too. The operands required for these
operations are numeric data. The result of these operations will also be numeric.
Table 6.3 shows some examples of binary arithmetic operations.

Variable | Variable | Addition | Subtraction | Multiplication | Division
x g x+y| x -y x *y x /vy
10 5 15 5 50 2
=11 8 -8 -14 =33 -3.66667
a1 =5 8 14 =33 =3, 66667
=510 =0 -60 -40 S100 5
Table 6.3 : Arithmetic operators
Modulus operator (%)

The modulus operator, also called as mod operator, gives the remainder value
during arithmetic division. This operator can only be applied over integer operands.

—

Table 6.4 shows some examples of modulus operation. Note that the sign of the
result is the sign of the first operand. Here in the table the first operand is x.

Variable Variable Modulus | Variable Variable Modulus
X y Operation X y Operation
X%y X%y
10 5 0 100 100 0
5 10 5 32 11 10
=3 11 =5 11 =5 1
5 -11 5 -11 5 =1l
-11 =5 =1l =5 -11 =5

Check yourself

Table 6.4 : Operations using Modulus operator

Arrange the fundamental data types in ascending order of size.

The name given to a storage location is known as

Name a ternary operator in C++.

Predict the output of the following operations if x =-5 and y = 3

initially:

a. —Xx

b. -y

C. -X+-y
d-x-y
e. x % -11

f.x+y
gx%y
h.x/y
i x *-y
. -Xx % -5

6.6.2 Relational operators

Relational operators are used for comparing numeric data. These are binary

operators. The result of any relational operation will be either True or False. In

C++, True is represented by 1 and False is represented by 0. There are six relational
operators in C++. They are < (fess than), > (greater than), <= (less than or equal to), >=
(greater than or equal 10), == (equal to) and V= (not equal 10). Note that equality checking
requires two equal symbols (==). Some examples for the use of various relational

operators and their results are shown in Table 6.5.

_

6. Data Types and Operators

m n m<n m>n m<=n | m>=n | m!'=n m==n
12 5 0 1 0 1 1 0
= 2 1 0 1 0 1 0

4 4 0 0 1 1 0 1

Table 6.5 : Operations using Relational operators
6.6.3 Logical operators

Using relational operators, we can compare values. Examples are 3<5, num!=10,
etc. These comparison operations are called relational expressions in C++. In some
cases, two or more comparisons may need to be combined. In Mathematics we
may use expressions like a>b>c. But in C++ itis not possible. We have to separate
this into two, as a>b and b>c and these are to be combined using the logical operator
&&,i.c. (a>b)&&(b>c). The result of such logical combinations will also be either
True or False (i.e. 1 or 0). The logical operators are && (logical AND), | | (logical

OR) and ! (logical NOT).
Logical AND (&&) operator

If two relational expressions El and E2 are - s Ep—,
combined using logical AND (&&) operator, the

result will be 1 (True) only if both E1 and E2 0 0 0
have values 1 (True). In all other cases the result 0 1 0
will be 0 (False). The results of evaluation of && 1 0 0
operation for different possible combination of

. . 1 1 1
inputs are shown in Table 6.6.

Table 6.6 : Logical AND
Examples: 10>5 && 15<25 evaluates to 1 (True)

10>5 && 100<25 evaluates to 0 (False)

Logical OR (| |) operator

If two relational expressions El and E2 are El E2 El[E2
combined using logical OR (| |) operator, the 0
result will be 0 (False) only if both El and E2 are
having value 0 (False). In all other cases the result
will be 1 (True). The results of evaluation of | |
operation for different possible combination of
inputs are shown in Table 6.7. Table 6.7 : Logical OR

Examples: 10>5 | | 100<25 evaluates to 1(True)
10> 15 | | 100<90 evaluates to 0 (False)

0
0
1
1

R O = O

1
1
1

—

(SESEE

Logical NOT operator (!) El 1E1

This operator is used to negate the result of a relational 0 1
expression. This is a unary operation. The results of
evaluation of ! operator for different possible inputs are
shown in Table 6.8.

Example: [(100<2) evaluates to 1 (Ttrue)
[(100>2) evaluates to 0 (False)

Table 6.8 :
Logical NOT

6.6.4 Input / Output operators

Usually input operation requires user’s intervention. In the process of input
operation, the data given through the keyboard is stored in a memory location.
C++ provides >> operator for this operation. This operator is known as get from
ot extraction operatot. This symbol is constituted by two greater than symbols.

Similatly in output operation, data is transferred from RAM to an output device.
Usually the monitor is the standard output device to get the results directly. The
opetator << is used for output operation and is called put to ot insertion opetator.

It is constituted by two less than symbols.

6.6.5 Assignment operator (=)

When we have to store a value in a memory location, assighment operator (=) is
used. This is a binary operator and hence two operands are required. The first
operand should be a variable where the value of the second operand is to be stored.
Some examples are shown in table 6.9.

Item Description
a=b The value of variable b is stored in a
a=3 The constant 3 is stored in variable a

Table 6.9 : Assignment operator

We discussed the usage of the relational operator == in Section 6.6.2. See the
difference between these two operators. The = symbol assigns a value to a variable,

whereas == symbol compares two values and gives True or False as the result.

6.6.6 Arithmetic assignment operators

A simple arithmetic statement can be expressed in a more condensed form using
arithmetic assignment operators. For example, a=a+10 can be represented as
a+=10. Here +=is an arithmetic assignment operator. This method is applicable

_

6. Data Types and Operators

to all arithmetic operators and they are Arithmetic Equivalent
shown in Table 6.10. The arithmetic assigm.ent arithm.etic
assignment operatots in C++ ate +=, —-= operation operation
*= /= %=. These are also known as C++ % += 10 % = % + 10
short-hands. These are all binary operators % —= 10 % = x — 10
and the first operand should be a variable.

The use of these operators makes the two x *= 10 x =x * 10
operations (arithmetic and assignment) x /= 10 x = x / 10
faster than the usual method. x %= 10 X = x % 10

Table 6.10 : C++ short hands
6.6.7 Increment (++) and

Decrement (--) operators

Increment and decrement operators are two special operators in C++. These are
unary operators and the operand should be a variable. These operators help keeping
the source code compact.

Increment operator (++)

This operator 1s used for incrementing the content of an integer variable by one.
This can be written in two ways: ++x (pre increment) and x++ (post increment).
Both are equivalent to x=x+1 as well as x+=1.

Decrement operator (--)

As a counterpart of increment operator, there is a decrement operator which
decrements the content of an integer variable by one. This operator is also used in
two ways: =—x (pre decrement) and x-~- (post decrement). These are equivalent to
x=x-1 and x-=1.

The two usages of these operators are called prefix form and postfix form of
increment/dectement operation. Both the forms make the same effect on the
operand variable, but the mode of operation will be different when these are used
with other operators.

Prefix form of increment/decrement operators

In the prefix form, the operator is placed before the operand and the inctement/
decrement operation is catried out first. The inctemented/dectemented value is
used for the other operations. So, this method is often called change, then use
method.

Consider the variables a, b, ¢ and d with values a=10, b=5. If an operation is
specified as c=++a, the value of a will be 11 and that of ¢ will also be 11. Here the
value of a is incremented by 1 at first and then the changed value of a is assigned

= —

to c. Thatis why both the variables get the same value. Similatly, after the execution
of d=--Db the value of d and b will be 4.

Postfix form of increment/dectement operators

When increment/dectement operation is petformed in postfix form, the operator
is placed after the operand. The current value of the variable is used for the remaining
operations and after that the inctement/dectement operation is cartied out. So,
this method is often called use, then change method.

Consider the same variables used above with the same initial values. After the
operation performed with c=a++, the value of a will be 11, but that of ¢ will be
10. Here the value of a is assigned to c at first and then a is incremented by 1. That
is, before changing the value of a itisused to assign to c. Similatly, after the execution
of d=b-- the value of d will be 5 but that of b will be 4.

6.6.8 Conditional operator(?:)

This is a ternary operator applied over three operands. The first operand will be a
logical expression (condition) and the remaining two are values. They can be
constants, variables or expressions. The condition will be checked first and if it is
True, the second operand will be selected to get the value, otherwise the third
operand will be selected. Its syntax is:

Expressionl? Expression2: Expression3
Let us see the operation in the following:

result = score>50 ? 'p' : 'f'

If the value of score is greater than 50 then the value 'p' is assigned to the

variable result, else value ' £' is assigned to result. More about this operator
will be discussed in Chapter 7.

6.6.9 sizeof operator

The operator sizeof isa unary compile-time operator that returns the amount
of memory space in bytes allocated for the operand. The operand can be a constant,
a variable or a data type. The syntax followed is given below:

e sizeof (data type)

e sizeof variable name

e sizeof constant

It is to be noted that when data type is used as the operand for sizeof operatot,
it should be given within a pair of parentheses. For the other operands parentheses

are not compulsory. Table 6.11 shows different forms of usages of sizeof operator.

_

6. Data Types and Operators

Item Description

sizeof (int) | Gives the value 4 (In GCC, size of int data type is 4 bytes)
sizeof 3.2 | Returns 8 (A floating point constant will be taken as double type data)

siliZicor ph If pis float type variable, it gives the value 4.

Table 6.11: Various usages of sizeof operator
6.6.10 Precedence of operators

Let us consider the case where different operators are used with the required
operands. We should know in which order the operations will be carried out. C++
gives priority to the operators for execution. During evaluation, pair of parentheses
is given the first priority. If the expression is not parenthesised, it is evaluated
according to the predefined precedence order. The order of precedence for the
operators is given in Table 6.12. In an expression, if the operators of the same
priority level occur, the precedence of execution will be from left to right in most

of the cases.

Priority Operations
1 () parentheses
2 ++,——, ! ,Unary+, Unary -, sizeof
3 * (multiplication), / (division), % (Modulus)
4 |+ (addition), — (subtraction)
5 [< (lessthan), <= (less than or equal to), > (greater than), >= (greater than or

equal to)

6 |==(equalto), ! = (notequal to)

7 |&& (logical AND)

8 | | (logical OR)

9 |? :(Conditional expression)

10 |=(Assignment operator), *=, /=, %=, +=, —= (arithmetic assignment operators)
11 |, (Comma)

Table 6.12: Precedence of operators
Consider the variables with values: a=3, b=5, c=4, d=2, x
After the operations specifiedinx = a + b * ¢ - d, the value in x will be 21.
Here * (multiplication) has higher priority than + (addition) and - (subtraction).
Therefore the variables b and ¢ are multiplied, then that resultis added to a. From
that result, d is subtracted to get the final result.

— |

A&

Itis important to note that the operator priority can be changed in an expression as
per the need of the programmer by using parentheses (). For example, if a=5,
b=4, c=3, d=2 then the result of a+b-c*d will be 3. Suppose the programmer
wants to perform subtraction first and then the addition and multiplication, you
need to use proper parentheses as (a+ (b-c)) *d. Now the output will be 12. For
changing operator priority, brackets [] and braces {} cannot be used.

The operator precedence may be different for different types
of compilers. Turbo C++ gives higher precedence to prefix
increment / decrement than its postfix form.

For example, if a is initially 5, the values of b and a after b=a++ +
++a are 12 and 7 respectively. This is equivalent to the set of statements
a=a+!1 (prefix expansion), b=a+a, and a=a+1 (postfix expansion).

6.7 Expressions

An expression is composed of operators and operands. The operands may be
either constants or variables. All expressions can be evaluated to get a result. This
resultis known as the value returned by the expression. On the basis of the operators
used, expressions are mainly classified into arithmetic expressions, relational
expressions and logical expressions.

6.7.1 Arithmetic expressions

An expression in which only arithmetic operators are used is called arithmetic
expression. The operands are numeric data and they may be variables or constants.
The value returned by these expressions is also numeric. Arithmetic expressions
are further classified into integer expressions, floating point (real) expressions and
constant expressions.

Integer expressions

If an arithmetic expression contains only integer operands, it is called integer
expression and it produces an integer result after performing all the operations
given in the expression. For example, if x and y are integer variables, some integer
expressions and their results are shown in Table 6.13. Note that all the above
expressions produce integer values as the results.

X vi ix+y|x/y -x + x *y 5 +x /vy x %y
5 2 7 2 5 7 1
6 3 9 2 12 7 0

Table 6.13: Integer expressions and their results

_

6. Data Types and Operators

Floating point expressions (Real expressions)

An arithmetic expression that is composed of only floating point data is called
floating point or real expression and it returns a floating point result after performing
all the operations given in the expression. Table 6.14 shows some real expressions

and their results, assuming that x and y are floating point variables.

x vi|ix+y|x/yv|x+x*y 5+x /vy x *x /vy
5.012.0 7.0 2.5 5.0 7.5 12.5
6.013.0 9.0 2.0 12.0 7.0 12.0

Table 6.14: Floating point expressions and their results
It can be seen that all the above expressions produce floating point values as the
results.

In an arithmetic expression, if all the operands are constant values, thenitis called
constant expression. The expression 20+5/2.0 is an example. The constants like
15,3.14, 'A" are also known as constant expressions.

6.7.2 Relational expressions

When relational operators are used in an expression, it is called relational expression
and it produces Boolean type results like True (1) or False (0). In these expressions,
the operands are numeric data. Let us see some examples of relational expressions
in Table 6.15.

b 4 v X >y X ==y x+y =y |x-2 == y+l1 | x*y == 6*y
5.0(2.0]11 (True)|O (False)l 1l (True)| 1 (True) 0 (False)
6 13 10 (False)|0 (False)] 1l (True)| O (False) 1 (True)

Table 6.15: Relational expressions and their results
We know that arithmetic operators have higher priority than relational operators.
So when arithmetic expressions are used on either side of a relational operator,
arithmetic operations will be carried out first and then the results are compared.
The table contains some expressions in which both arithmetic and relational operators
are involved. Though they contain mixed type of operators, they are called relational
expressions since the final result will be either True or False.

6.7.3 Logical expressions

Logical expressions combine two or more relational expressions with logical
operators and produce either True or False as the result. A logical expression may
contain constants, variables, logical operators and relational operators. Let us see
some examples in Table 6.16.

=

X y | x>=y && x==20 | x==5|ly== x==y && y+2== ! (x==y)

5.0(2.0 0 (False) 1 (True) 0 (False) 1 (True)
20 13 1 (True) 0 (False) 0 (False) 1 (True)

Table 6.16: Logical expressions and their results

As seen in Table 6.16, though some expressions consist of arithmetic and relational
operators in addition to logical operators, the expressions are considered as logical
expressions. This is because the operation carried out at last will be the logical
operation and the result will be either True or False.

Check yourself

1. Predict the output of the following operations if x=5 and y=3.

a. x>=10&& y>=4 c. x>=1|y>=4

b. x>=1&& y>=3 d. x>=1|y>=3
2. Predict the output if p=5, q=3, =2

a. ++p-q*r/2 C. p-q-r*¥2+p

b. p*q--+r d. pt=5*qtr*t/2

6.8 Type conversion

As discussed eatlier arithmetic expressions are of two types, integer expressions
and real expressions. In both cases, the operands involved in the arithmetic operation
are of the same data type. But there are situations where different types of numeric
data may be involved. For example in C++, the integer expression 5 /2 gives 2 and
the real expression 5.0/2.0 gives 2.5. But what will the result of 5/2.0 or 5.0/2 be?
Conversion techniques are applied in such situations. The data type of one operand
will be converted to another. It is called type conversion and can be done in two
ways: implicitly and explicitly.

6.8.1 Implicit type conversion (Type promotion)

Implicit type conversion is performed by C++ compiler internally. In expressions
where different types of data are involved, C++ converts the lower sized operands
to the data type of highest sized operand. Since the conversion is always from
lower type to higher, itis also known as type promotion. Data types in the decreasing
order of size are as follows: long double, double, float, unsigned long,
long int and unsigned int / short int. The type of the result will also
be the type of the highest sized operand.

_

6. Data Types and Operators

For example, the expression 5 / 2 * 3 + 2.5 gives the tesult 8.5. The evaluation
steps ate as follows:

Stepl: 5/2—> 2 (Integer division)

Step2: 2*¥3 06 (Integer multiplication)

Step3: 6+ 25— 8.5 (Floating point addition, 6 is converted into 6.0)

6.8.2 Explicit type conversion (Type casting)

Unlike implicit type conversion, sometimes the programmer may decide the data
type of the result of evaluation. This is done by the programmer by specifying the
data type within parentheses to the left of the operand. Since the programmer
explicitly casts a data to the desired type, it is known as explicit type conversion ot
type casting. Usually, type casting is applied on the variables in the expressions.
More examples will be discussed in Section 6.9.2.

6.9 Statements

Can you recollect the learning hierarchy of a natural language? Alphabet, words,
phrases, sentences, paragraphs and so on. In the learning process of C++ language
we have covered character set, tokens and expressions. Now we have come to the
stage where we start communication with the computer sensibly and meaningfully
with the help of statements. Statements are the smallest executable unit of a
programming language. C++ uses the symbol semicolon (;) as the delimiter of a
statement. Different types of statements used in C++ are declaration statements,
assignment statements, input statements, output statements, control statements etc.
Each statement has its own purpose in a C++ program. All these statements except
declaration statements are executable statements as they possess some operations
to be done by the computer. Executable statements are the instructions to the
computer. The execution of control statements will be discussed in Chapter 7. Let
us discuss the other statements.

6.9.1 Declaration statements

Every user-defined word should be defined in the program before it is used. We
have seen that a variable is a user-defined word and it is an identifier of a memory
location. It must be declared in the program before its use. When we declare a
variable, we tell the compiler about the type of data that will be stored in it. The
syntax of variable declaration is:

data type <variablel>[, <variable2>, <variable3>,...];
The data_type in the syntax should be any valid data type of C++. The syntax
shows that when there are more than one variables in the declaration, they are
separated by comma. The declaration statement ends with a semicolon. Typically,
variables are declared either just before they are used or at the beginning of the

-

(SESEE

program. In the syntax, everything given inside the symbols [and | are optional.
The following statements are examples for variable declaration:

int rollnumber;

double wgpa, avg score;

The first statement declares the variable rollnumber as int type so thatit will be
allocated four bytes of memory (as per GCC) and it can hold an integer number
within the range from -2147483648 to +2147483647. The second statement defines
the identifiers wgpa and avg_score as variables to hold data of double type.
Each of them will be allocated 8 bytes of memory. The memory is allocated to the
variables during the compilation of the program.

Variable initialisation

We saw, in Section 6.5, that a variable is associated with two values: L-value (its
address) and R-value (its content). When a variable is declared, a memory location
with an address will be allocated for it. What will its content be? It is not blank or 0
ot space! If the variable is declared with int data type, the content or R-value will
be any integer within the allowed range. But this number cannot be predicted or
will not always be the same. So we call it garbage value. When we store a value into the
variable, the existing content will be replaced by the new one. The value can be
stored in the variable either at the time of compilation or execution. Supplying
value to a variable at the time of its declaration is called variable initialisation.
This value will be stored in the respective memory location during compile-time.
The assignment operator (=) is used for this. It can be done in two ways as given
below:
data type variable = value;

OR

data type variable(value)

The statements: int xyz =120; and int xyz (120) ; are examples of variable
initialisation statements. Both of these statements declare an integer variable xyz

and store the value 120 in it as shown in Figure 6.3.
More examples are: 120
float wval=0.12, b=5.234;
Xyz

char k="A’; Fig. 6.3: Variable
A variable can also be initialised during the execution of the initialisation
program and is known as dynamic initialisation. This is done by
assigning an expression to a variable as shown in the following statements:

float product = x * y;
float interest = p*n*r/100.0;

_

6. Data Types and Operators

In the first statement, the variable product is initialised with the product of the
values stored in x and y at runtime. In the second case, the expression
p*n*r/100.0 is evaluated and the value returned by it will be stored in the variable
interest.

Note that during dynamic initialisation, the variables included in the expression at
the right of assignment operator should have valid data. Otherwise it will produce
unexpected results.

const - The access modifier

Itis a good practice to use symbolic constants rather than using numeric constants
directly. For example, we can use symbolic names like Pi instead of using 22.0/7.0
or 3.14. The keyword const is used to create such symbolic constants whose value
can never be changed during execution. Consider the following statement:

float pi=3.14;

The floating point variable pi is initialised with the value 3.14. The content of pi
can be changed during the execution of the program. But if we modify the declaration
as: const float pi=3.14;

the value of pi remains constant (unaltered) throughout the execution of the
program. The read/write accessibility of the vatiable is modified as read only. Thus,
the const acts as an access modifier.

During software development, larger programs are developed
using collaborative effort. Several people may work together on
different portions of the same program. They may share the same
variable. In these situations, there may be occasions where one
may modify the content of the variable which will adversely affect other
person's coding. In these situations we have to keep the content of variables
unaffected by the activity of others. This can be done by using 'const".

6.9.2 Assignment statements

When the assignment operator (=) is used to assign a value to a variable, it forms an
assignment statement. It can take any of the following syntax:

variable = constant;

variablel = variable?2;
variable = expression;
variable = function();

In the third case, the result of the expression is stored in the variable. Similarly, in
the fourth case, the value returned by the function is stored. The concept of functions
will be discussed in Chapter 10.

—— |

Some examples of assignment statements are given below:

A = 15; b = 5.8;

c = a + b; c =a * b;

d = (a + b)*(c + d); r = sqrt(25);
In the last example, sqrt () is a function that assigns the square root of 25 to the
variable r.

The left hand side (LHS) of an assignment statement must be a variable. During
execution, the expression at the right hand side (RHS) is evaluated first. The result
is then assigned (stored) to the variable at LHS.

Assignment statement can be chained for doing multiple assignments at a time. For
instance, the statement x=y=z=13; assigns the value 13 in three variables in the
otder of z, y and x. The variables should be declared before this assignment. If we
assign a value to a variable, the previous value in it, if any, will be replaced by the
new value.

Type compatibility
During the execution of an assignment statement, if the data type of the RHS
expression is different from that of the LHS variable, there are two possibilities.

e The size of the data type of the variable at LHS is higher than that of the
variable or expression at RHS. In this case data type of the value at RHS is
promoted (type promotion) to that of the variable at LHS. Consider the
following code snippet:

int a=5, b=2;

float p, g;

p = b;

a=a/ p;
Here the data type of b is promoted to float and 2.0 is stored in p. When
the expression a/p is evaluated, the result will be 2.5 due to the type promotion
of a. So, g will be assigned with 2.5.

e The second possibility is that the size of the data type of LHS variable is
smaller than the size of RHS value. In this case, the higher order bits of the
result will be truncated to fit in the variable location of LLHS. The following
code illustrates this.

float a=2.606;

int p, g;

p = a;

qg=a * 4;
Here the value of p will be 2 and that of g will be 10. The expression a*4 is
evaluated to 10.4, but g being int type it will hold only 10.

_

6. Data Types and Operators

Programmer can apply the explicit conversion technique to get the desired results
when there are mismatches in the data types of operands. Consider the following
code segment.

int p=5, g=2;

float x, y;

x = p/a;

y = (x+p)/q;
After executing the above code, the value of x will be 2.0 and that of y will be 3.5.
The expression p/q being an integer expression gives 2 as the result and is stored in
x as floating point value. In the last statement, the pair of parentheses gives priority
to x+p and the result will be 7.0 due to the type promotion of p. Then the result
7.0 will be the first operand for the division operation and hence the result will be
3.5 since gis converted into float. If we have to get the floating point result from
p/qg to store in x, the statement should be modified as x=(float)p/qg; or x=p/

(float) g; by applying type casting.

6.9.3 Input statements

Input statement is a means that allows the user to store data in the memory during
the execution of the program. We saw that the get from or extraction operator
(>>) specifies the input operation. The operands required for this operator are the
input device and a location in RAM where data is to be stored. Keyboard being a
standard console device, the stream (sequence) of data is extracted from the
keyboard and stored in memory locations identified by variables. Since C++ is an
object oriented language, keyboard is considered as the standard input stream device
and is identified as an object by the name ein (pronounced as ‘see in). The simplest
form of an input statement is:
streamobject >> variable;

Since we use keyboard as the input device, the st reamobject in the syntax will
be substituted by cin. The operand after the >> operator should strictly be a
variable. For example, the following statement reads data from the keyboard and
stores in the variable num.

0000

clin >> num; oxo0 Variable num
Extraction

Object Operator

Figure 6.4 shows how [oin]_’[>>]_> ________

data is extracted from I 20005
keyboard and stored in [SSSESSSSSRERREEEES

the variable. . .
Fig 6.4 : Input procedure in C++

@0

6.9.2 Output statements

Output statements make the results available to users through any output device.
The put to ot insertion operator (<<) is used to specify this opetation. The opetands
in this case are the output device and the data for the output. The syntax of an
output statement is:

streamobject << data;
The streamobject may be any output device and the data may be a constant, a
variable or an expression. We use monitor as the commonly used output device
and C++ identifies it as an object by the name cout (pronounced as ‘see out)).
The following are some examples of output statement with monitor as the output
device:

cout << num;

cout << “hello friends”;

cout << num+12;
The first statement displays
the content of the variable ! 0000
num. The second statement o1

displays the string constant l Object operater |
"hello friends" and the [°°“t]4—[14]m """"
last statement shows the value E
returned by the expression
num+12 (assuming that num

contains numeric value). Figure 6.5 shows how data is inserted into the output stream
object (monitor) from the memory location num.

Variable num

Fig. 6.5: Output procedure in C++

The tokens cin and cout are not keywords. They are predefined
AP words that are not part of the core C++ language, and you are
allowed to redefine them. They are defined in libraries required
by the C++ language standard. Needless to say, using a
predefined identifier for anything other than its standard meaning can
be confusing and dangerous and such practice should be avoided. The
safest and easiest practice is to treat all predefined identifiers as if
they were keywords.

=)
< ot

Cascading of I/O operators
Suppose you want to input three values to different variables, say x, y, and z. You
may use the following statements:

cin>>x;
cin>>y;

cin>>z;

_

6. Data Types and Operators

But these three statements can be combined to form a single statement as given
below:
cin>>x>>y>>7z;

The multiple use of input or output operators in a single statement is called
cascading of I/O operators. In the use of cascading of input opetators, the values
input are assigned to the variables from left to right. In the example cin>>x>>y>>z;
the first value is assigned to x, the second to y and the third to z. While entering
values to the variables %, y and z during execution the values should be separated
by space bar, tab, or carriage return.

Similarly, if you want to display the contents of different variables (say %, y, z), use
the following statement:
cout<<x<<y<<z;

If variables, constants and expressions appear together for output operations, the
above technique can be applied as in the following example:
cout<<"The number is "<<z;

While cascading output operators, the values for the output will be retrieved from
right to left. Consider the code fragment given below:

int x=5;

cout<<x<<"\t'"'<<++x;

The output of this code will be: 6 6
Itwillnotbe: 5 6

Itis to be noted that both << and >> operators cannot be used in a single statement.

In the statement x=y=z=5; the = operator is cascaded. Here also the cascading is
from right to left.

6.10 Structure of a C++ program

We are now in a position to solve simple problems by using the statements we
discussed so far. But a set of statements alone does not constitute a program. A
C++ program has a typical structure. It is a collection of one or more functions. A
function means the set of instructions to perform a particular task referred to by a
name. Since there can be many functions in a C++ program, they are usually
identified by unique names. The most essential function needed for every C++
programis the main () function.

-

The structure of a simple C+ + program is given below:

#include <header file>
using namespace identifier;
int main ()

{

statements;

return O0;

}

The first line is called preprocessor directive and the second line is the namespace
statement. The third line is the function header which is followed by a set of
statements enclosed by a pair of braces. Let us discuss each of these parts of the
program.

6.10.1 Preprocessor directives

A C++ program starts with pre-processor directives. Preprocessors are the compiler
directive statements which give instruction to the compiler to process the
information provided before actual compilation starts. Preprocessor directives are
lines included in the code that are not program statements. These lines always start
with a # (hash) symbol. The pre-processor directive #include is used to link the
header files available in the C++ library by which the facilities required in the
program can be obtained. No semicolon (;) is needed at the end of such lines.
Separate #include statements should be used for different header files. There are

some other pre-processor directives such as #define, #undef, etc.

6.10.2 Header files

Header files contain the information about functions, objects and predefined derived
data types and they are available along with compiler. There are a number of such
files to support C++ programs and they are keptin the standard library. Whichever
program requires the support of any of these resources, the concerned header file
is to be included. For example, if we want to use the predefined objects cin and
cout, we have to use the following statement at the beginning of the program.
#include <iostream>

The header file iostream contains the information about the objects cin and
cout. Eventhough header files have the extension . h, it should not be specified for
GCC. But the extension is essential for some other compilers like Turbo C++ IDE.

_

6. Data Types and Operators

6.10.3 Concept of namespace

A program cannot have the same name for more than one identifier (variables or
functions) in the same scope. For example, in our home two or more persons (or
even living beings) will not have the same name. If there are, it will surely make
conflicts in the identity within the home. So, within the scope of our home, a name
should be unique. But our neighbouring home may have a person (or any living
being) with the same name as that of one of us. It will not make any confusion of
identity within the respective scopes. But an outsider cannot access a particular
person by simply using the name; but the house name is also to be mentioned.

The concept of namespace is similar to a house name. Different identifiers are
associated to a particular namespace. Itis actually a group name in which each item
is unique in its name. User is allowed to create own namespaces for variables and
functions. We can use an identifier to give name to a namespace. The keyword
using technically tells the compiler about a namespace where it should search for
the elements used in the program. In C++, std is an abbreviation of 'standard’
and it is the standard namespace in which cout, cin and alot of other objects are
defined. So, when we want to use them in a program, we need to follow the format
std::cout and std: : cin. This kind of explicit referencing can be avoided with
the statement using namespace std; inthe program. In such a case, the compiler
searches this namespace for the elements cin, cout, endl, etc. So whenever the
computer comes across cin, cout, endl or anything of that matter in the program,
it will read it as std: :cout, std::cin or std: :endl.

The statement using namespace std; doesn't really add a function, it is the
#include <iostream> that "loads" cin, cout, endl and all the like.

6.10.4 Themain () function

Every C++ program consists of a function namedmain () . The execution starts at
main () and ends withinmain () . If we use any other function in the program, itis
called (or invoked) frommain (). Usually a data type precedes themain () and in
GCC, it should be int.

The function headermain () is followed by its body, which is a set of one or more
statements within a pair of braces { }. This structure is known as the definition of
themain () function. Each statement is delimited by a semicolon (;). The statements
may be executable and non-executable. The executable statements represent
instructions to be carried out by the computer. The non-executable statements are
intended for compiler or programmer. They are informative statements. The last
statement in the body of main () is return 0;. Even though we do not use this
statement, it will not make any error. Its relavance will be discussed in Chapter 10.

-

C++isa free formlanguage in the sense that it is not necessary to write each statement
in new lines. Also a single statement can take more than one line.

6.10.5 A sample program

Let us look at a complete program and familiarise ourselves with its features, in
detail. This program on execution will display a text on the screen.

#include <iostream>

using namespace std;

int main ()

{
cout<<"Hello, Welcome to C++";
return 0;

}
The program has seven lines as detailed below:

Line 1: The preprocessor directive #include is used to link the header file
iostream with the program.

Line 2: The using namespace statement makes available the identifier cout in
the program.

Line 3: The header of the essential function fora C++ program, i.e., int main ().

Line 4: An opening brace { that marks the beginning of the instruction set
(program).

Line 5: An output statement, which will be executed when we run the program, to

display the text "Hello, Welcome to C++" on the monitor. The header
file iostreamis included in this program to use cout in this statement.

Line 6: The return statement stops the execution of the main () function. This
statement is optional as far asmain () is concerned.

Line 7: A closing brace } that marks the end of the program.

6.11 Guidelines for coding

A source code looks good when the coding is legible, logic is communicative and
errors if any are easily detectable. These features can be experienced if certain styles
are followed while writing programs. Some guidelines are discussed in this section
to write stylistic programs.

_

6. Data Types and Operators

Use suitable naming convention for identifiers

Suppose we have to calculate the salary for an employee after deductions. We may
codeitas: A =B - C;

where A is the net salary, B the total salary and C total deduction. The variable
names A, B and C do not reflect the quantities they denote. If the same instruction
is expressed as follows, it would be better:

Net salary = Gross_salary - Deduction;

The variable names used in this case help us to remember the quantity they possess.
They treadily reflect theit purpose. These kinds of identifiets are called mnemonic
names. The following points are to be remembered in the choice of names:

e Choose good mnemonic names for all variables, functions and procedures.
e.g. avg_hgt, Roll No, emp code, SumOfDigits, etc.

o Use standardized prefixes and suffixes for related variables.
e.g. numl, num2, num3 for three numbers

o Assign names to constants in the beginning of the program.
e.g float PI = 3.14;

Use clear and simple expressions

Some people have a tendency to reduce the execution time by sacrificing simplicity.
This should be avoided. Consider the following example. To find out the remainder
after division of x by n, we can code as: y = x-(x/n) *n;

The same thing is achieved by a simpler and more elegant piece of code as shown
below:

y = x % n;
So it is better to use simpler codes in programming to make the program more
simple and clear.

Use comments wherever needed

Comments play a very important role as they provide internal documentation of a
program. They are lines in code that are added to describe the program. They are
ignored by the compiler. There are two ways to write comments in C++:

Single line comment: The characters // (two slashes) is used to write single line
comments. The text appearing after // in a line is treated as a comment by the
C++ compiler.

Multiline comments: Anything written within /* and * / is treated as comment
so that the comment can take any number of lines.

-

But care should be taken that no relevant code of the program is included accidently
inside the comment. The following points are to be noted while commenting:

o Always insert prologues, the comments in the beginning of a program that
summarises the purpose of the program.

o Comment each variable and constant declaration.

o Use comments to explain complex program steps.

o Itisbetter to include comments while writing the program itself.

e Write short and clear comments.

Relevance of indentation

In computer programming, an indent style is a convention governing the indentation
of blocks of code to convey the program’s structure, for good visibility and better
clarity. Anindentation makes the statements clear and readable. It shows the levels
of statements in the program.

The usage of these guidelines can be observed in the programs given in the next
section.

Program gallery

Let us now write programs to solve some problems following the coding guidelines.
The call-outs given are not part of the program. Program 6.1 displays a message.

Program 6.1: To display a message

/* This program displays the message

"Smoking is injurious to health'
. Multiline comment
on the monitor */

#include <iostreamh> // To use the cout object
using namespace std; // To access cout

int main() //program begins here Single line comment

{ //The following output statement displays a message
cout << "Smoking is injurious to health";
return 0;

} //end of the program

On executing Program 6.1, the output will be as follows:
Smoking is injurious to health

More illustrations on the usage of indentation can be seen in the examples given in
Chapter 7.

—_

® ® @ Computer Science - XI 6. Data Types and Operators

Program 6.2 accepts two integer numbers from the user, finds its sum and displays
the result.

Program 6.2: To find the sum of two integer numbers

#include <iostream>
using namespace std;
int main ()
{ //Program begins
/* Two variables are declared to read user inputs and the
variable sum is declared to store the result
*/
int numl, num2, sum;
cout<<"Enter two numbers: "; //Prompt for input
cin>>numl>>num?; //Cascading to get two numbers
sum=numl+num? ; //Assignment statement to find the sum
cout<<"Sum of the entered numbers = "<<sum;
/* The result is displayed with proper message.
Cascading of output operator is utilized @/
return 0;

}

A sample output of Program 6.2 is given below: User inputs
7 = separated by spaces

Enter two numbers: 5

Sum of the entered numbers = 12
Let us consider another problem. A student is awarded with three scores obtained
in three Continuous Evaluation (CE) activities. The maximum score of an activity
is 20. Find the average score of the student.

Program 6.3: To find the average of three CE scores

#include <iostream>
using namespace std;
int main()
{
int score 1, score 2, score 3;
float avg;
//Average of 3 numbers can be a floating point value
cout << "Enter the three CE scores: ";
cin >> score 1 >> score 2 >> score 3;
avg = (score 1 + score 2 + score 3) / 3.0;

/* The result of addition will be an integer value. If 3
is written instead of 3.0, integer division will be
performed and will not get the correct result */
cout << "Average CE score is:
return O;

}

<< avg;

Program 6.3 gives the following output for the CE scores 17, 19 and 20.

Enter the three CE scores: 17
Average CE score is: 18.666666

19

20

The assighment statement to find the average value uses an expression to the right
of assignment operator (=). This expression has two + operators and one / operator.
The precedence of / over + is changed by using parentheses for addition. The
operands for the addition operators are all int type data and hence the result will
be an integer. When this integer result is divided by 3, the output will again be an
integer. If it was so, the output of Program 6.3 would have been 18, which is not
accurate. Hence floating point constant 3.0 is used as the second operand for /
operator. It makes the integer numerator float by type promotion.

Suppose the radius of a circle 't' is given and you are requested to compute its area
and the perimeter. As you know;, area of a circle is calculated using the formula
nt” and petimetet by 2z t, where n = 3.14. Program 6.4 solves this problem.

Program 6.4: To find the area and perimeter of a circle for a given radius

#include <iostream>
using namespace std;
int main()

{

const float PI = 22.0/7; //Use of const access modifier

float radius, area, perimeter;

cout<<"Enter the radius of the circle:

cin>>radius;
area = PI * radius * radius;
perimeter = 2 * PI * radius;

LY

4

Escape sequence
‘\n’ prints a new
line after displaying
the value of Area

cout<<"Area of the circle = "<<area<<"\n";
cout<<"Perimeter of the circle = "<<perimeter;
return 0;

A sample output of Program 6.4 is as follows:

_

® ® @ Computer Science - XI 6. Data Types and Operators

Enter the radius of the circle: 2.5
Area of the circle = 19.642857

Perimeter of the circle = 15.714285
The last two output statements of Program 6.4 displays both the results in separate

lines. The escape sequence character ' \n' brings the cursor to the new line before
the last output statement gets executed.

Let us develop another program to find simple interest. As you know;, principal
amount, rate of interest and period are to be given as input to get the result.

Program 6.5: To find the simple interest

#include <iostream>

using namespace std;

int main ()

{
float p Amount, n Year, 1 Rate, int Amount;
cout<<"Enter the principal amount in Rupees: ";
cin>>p Amount;
cout<<"Enter the number of years for the deposit: ";

cin>>n Year;

cout<<"Enter the rate of interest in percentage: ";

cin>>i Rate;

int Amount = p Amount * n Year * i Rate /100;

cout << "Simple interest for the principal amount "
<<p_ Amount<<" Rupees for a period of "<<n Year
<<" years at the rate of interest "<<i rate
<<" is "<<int Amount<<" Rupees";

return 0;

}
A sample output of Program 6.5 is given below:

Enter the principal amount in Rupees: 100
Enter the number of years for the deposit: 2

Enter the rate of interest in percentage: 10

Simple interest for the principal amount 100 Rupees for a

period of 2 years at the rate of interest 10 is 20 Rupees

The last statement in Program 6.5 is the output statement and it spans over four
lines. Note that there is no semi colon at the end of each line and so it is considered

a single statement. On execution of the program the result may be displayed in
multiple lines depending on the size and resolution of the monitor of your computet.

Program 6.6 solves a temperature conversion problem. The temperature in degree
celsius will be given as input and the output will be its equivalent in fahrenheit.

Program 6.6: To convert temperature from Celsius to Fahrenheit

#include <iostream>
using namespace std;
int main ()
{
float celsius, fahrenheit;
cout<<"Enter the Temperature in Celsius: ";
cin>>celsius;
fahrenheit=1.8*celsius+32;
cout<< celsius<<" Degree Celsius = "
<< fahrenheit<<" Degree Fahrenheit";
return 0;

}

Program 6.6 gives a sample output as follows:
Enter the Temperature in Celsius: 37
37 Degree Celsius = 98.599998 Degree Fahrenheit

We know that each character literal in C++ has a unique value called its ASCII
code. These values are integers. Let us write a program to find the ASCII code of a
given character.

Program 6.7: To find the ASCII value of a character

#include <iostream>
using namespace std;
int main()
{
char ch;
int asc;
cout << "Enter the character: ";
cin >> ch;
asc = ch;
cout << "ASCII value of "<<ch<<" = " < asc;
return 0;

_

6. Data Types and Operators

A sampler output of Program 6.7 is given below:

Enter the character: A

ASCII value of A = 65

Let us sum up

Data types are means to identify the type of data and associated operations handling
it. Hach data type has a specific size and a range of data. Data types are used to
declare variables. Type modifiers help handling a higher range of data and are used
with data types to declare variables. Different types of operators are available in
C++ for various operations. When operators are combined with operands (data),
expressions are formed. There are mainly three types of expressions - arithmetic,
relational and logical. Type conversion methods are used to get desired results
from arithmetic expressions. Statements are the smallest executable unit of a
program. Variable declaration statements define the variables in the program and
they will be allocated memory space. The executable statements like assighment
statements, input statements, output statements, etc. help giving instructions to the
computer. Some special operators like arithmetic assignment, increment, decrement,
etc. make the expressions and statements compact and the execution faster. C++
program has a typical structure and it must be followed while writing programs.
Stylistic guidelines shall be followed to make the program attractive and
communicative among humans.

4 Learning outcomes

Atfter the completion of this chapter the learner will be able to

o identify the various data types in C++.

o list and choose appropriate data type modifiers.

o choose appropriate variables.

e experiment with various operators.

o apply the vatious I/O opetatots.

e write various expressions and statements.

o identify the structure of a simple C++ program.

o identify the need for stylistic guidelines while writing a program.
e write simple programs using C++.

* ® ® Computer Science - XI

Lab activity

1. Write a program that asks the user to enter the weight in grams, and then
display the equivalent in Kilograms.

2. Write a program to generate the following table

2013 100%
2012 99.9%
2011 95.5%
2010 90.81%
2009 85%

Use a single cout statement for output. (Hint: Make use of \n and \t)

4. Write a short program that asks for your height in Meter and Centimeter and
converts it to Feet and inches. (1 foot = 12 inches, 1 inch = 2.54 cm).

5. Write a program to compute simple interest and compound interest.

6. Write a program to : (1) print ASCII code for a given digit, (ii) print ASCII
code for backspace. (Hint : Store escape sequence for backspace in an integer
variable).

7. Write a program to accept a time in seconds and convert into hrs: mins: secs
format. For example, if 3700 seconds is the input, the output should be 1hr: 1
min: 40 secs.

 Sample questions I

Very short answer type

What are data types? List all predefined data types in C++.

What is a constant?

What is dynamic initialisation of variables?

What s type casting?

Write the purpose of declaration statement?

Name the header file to be included to use cin and cout in programs?
What is the input operator ">>" and output operator "<<" called ?
What will be the result of a =5/3 if ais (i) float and (i) int ?

_

® N Uk e

® ® @ Computer Science - XI 6. Data Types and Operators

9. What will be the value of P= P++ + ++i where 1 is 22 and P= 3 initially?
10. Find the value given by the following expression if j =5 initially.
®) GF++))%0 (i) (3*j++)%0
11. What will be the order of evaluation for following expressions?
i) i+5>=i-6 (i) s+10<p-2+2%q
12. What will be the result of the following if ans is 6 initially?
(i) cout <<ans = §8; (il) cout << ans ==
Short answer type
What is a variabler List the two values associated with it.
In how many ways can a variable be declared in C++?
Explain the impact of type modifiers of C++ in variable declaration.
What is the role of the keyword 'const'?
Explain how prefix form of increment operation differs from postfix form.

Write down the operation performed by sizeof operator.

R S A L e

Explain the two methods of type conversions.
10. What would happen ifmain () is not present in a program?

11. Identify the errors in the following code segments:

(@) int main()

{ cout << "Enter two numbers"

cin >> num >> auto

float area = Length * breadth ; }
(b) #include <iostream>

using namespace std

void Main ()

{ int a, Db

cin <<a <<b

max=(a > b) a:b

cout>max

}
12. Find out the errors, if any, in the following + + statements:
(i) cout<< "a=" a; (v) cin >> "\n" >> vy ;
(i) m=5,n=12;015 (vi) cout >> \n "abc"

i

= ® ® Computer Science - XI

(i) cout << "x" ; <<x; (vii) a = b + ¢

@v) cin >> y (viil) break = x

13. What is the role of relational operators? Distinguish between == and =.

14. Comments are useful to enhance readability and understandability of a
program. Justify this statement with examples.

Long answer type

1. Explain the operators of C++ in detail.

2. Explain the different types of expressions in C++ and the methods of type
conversions in detail.

3. Write the working of arithmetic assignment operator? Explain all arithmetic
assignment operators with the help of examples.

