
1

lllll Decision making statements

o if statement

o if … else statement

o Nested if

o else if ladder

o switch statement

o Conditional operator

lllll Iteration statements

o while statement

o for statement

o do ... while statement

o Nesting of loops

lllll Jump statements

o goto

o break

o continue

Key Concepts

In the previous chapters we discussed some
executable statements of C++ to perform
operations such as input, output and assignment.
We know how to write simple programs. The
execution of these programs is sequential in
nature, that is, the statements constituting the
program are executed one by one. In this chapter,
we discuss C++ statements used for altering the
default flow of execution. As we discussed in
Chapter 4, selection, skipping or repeated
execution of some statements may be required
for solving problems. Usually this decision will
be based on some condition(s). C++ provides
statements to facilitate this requirement with the
help of control statements. These statements are
used for altering the normal flow of program
execution. Control statements are classified into
two: (i) decision making/selection statements and
(ii) iteration statements. Let us discuss these
statements, their syntax and mode of execution.

7.1 Decision making statements

At times, it so happens that the computer may
not execute all statements while solving problems.
Some statements may be executed in a situation,
while they may not be executed in another
situation. The computer has to take the required
decision in this respect. For this, we have to
provide appropriate conditions which will be
evaluated by the computer. It will then take a

7

188

decision on the basis of the result. The decision will be in the form of selecting a
particular statement for execution or skipping some statement from being executed.
The statements provided by C++ for the selected execution are called decision making

statements or selection statements. if and switch are the two types of selection
statements in C++.

7.1.1 if statement

The if statement is used to select a set of statements for execution based on a condition.
In C++, conditions (otherwise known as test expressions) are provided by relational
or logical expressions. The syntax (general form) of if statement is as follows:

if (test expression)

 {

statement block;

}

Here the test expression represents a condition which is either a relational

expression or logical expression. If the test expression evaluates to True (non-zero

value), a statement or a block of statements associated with if is executed. Otherwise,

the control moves to the statement following the if construct. Figure 7.1 shows the

mode of execution of if statement. While using if, certain points are to be

remembered.

l The test expression is always enclosed in

parentheses.

l The expression may be a simple expression

constituted by relational expression or a

compound expression constituted by logical

expression.

l The statement block may contain a single statement

or multiple statements. If there is a single

statement, then it is not mandatory to enclose it in

curly braces { }. If there are multiple statements,

they must be enclosed in curly braces.

Program 7.1 accepts the score of a student and displays the text "You have Passed"

only if he/she has passed. (Assume that 18 is the minimum score for pass).

Body of

if statement that consists

of the statement(s) to be

executed when the

condition is true

Fig. 7.1 : Working of
 if statement

False

7. Control Statements

189

Program 7.1: To display 'You have passed' if score is 18 or more

#include<iostream>

using namespace std;

int main()

{

int score ;

cout << "Enter your score: ";

cin >> score;

if (score >= 18)

cout << "You have passed";

return 0;

}

The following is a sample output of program 7.1:

Enter your score: 25

You have passed

In Program 7.1, the score of a student is entered and stored in the variable score.
The test expression compares the value of score with 18. The body of if will be
executed only if the test expression evaluates to True. That means, when the score is
greater than or equal to 18, the output You have Passed will be displayed on the
screen. Otherwise, there will be no output.

Note that the statement block associated with if is written after a tab space. We call it
indentation. This is a style of coding which enhances the readability of the source
code. Indentation helps the debugging process greatly. But it has no impact on the
execution of the program.

Consider the following C++ program segment. It checks whether a given character is
an alphabet or a digit.

char ch;

cin >> ch;

if (ch >= 'a' && ch <= 'z')

cout << "You entered an alphabet";

if (ch >= '0' && ch <= '9')

{

cout << “You entered a digit\n”;

cout << “It is a decimal number “;

}

Logical expression

is evaluated

Only a single

statement; No need

of braces { }

More than one

statement; Must be

enclosed in braces { }

Body of if

190

7.1.2 if...else statement

Consider the if statement in Program 7.1:

if (score >= 18)

cout << “You have passed”;

Here, the output is obtained only if the score is greater than or equal to 18. What will

happen if the score entered is less than 18? It is clear that there will be no output.

Actually we don't have the option of selecting another set of statements if the test

expression evaluates to False. If we want to execute some actions when the condition

becomes False, we introduce another form of if statement, if...else. The syntax

is:
if (test expression)

{

statement block 1;

}

else

{

statement block 2;

}

If the test expression

evaluates to True, only the

statement block 1 is

executed. If the test

expression evaluates to

False statement block 2

is executed. The flowchart

shown in Figure 7.2 explains

the execution of if...else

statement.

The following code segment

illustrates the working of

if...else statement.

if (score >= 18)

 cout << "Passed";

else

 cout << "Failed";

Let us write a program to input the heights of two students and find the taller.

This statement is executed only when score is less

than 18 (i.e. when Test expression returns False)

This statement is executed only when score is 18 or

more (i.e. when Test expression returns True)

Fig 7.2 : Flowchart of if - else statement

Statement block 1 Statement block 2

Test
Expression

False

7. Control Statements

191

Program 7.2: To find the taller student by comparing their heights

#include <iostream>

using namespace std;

int main()

{

int ht1, ht2;

cout << "Enter heights of the two students: ";

cin >> ht1 >> ht2;

if (ht1 > ht2) //decision making based on condition

cout<<"Student with height "<<ht1<<" is taller";

else

cout<<"Student with height "<<ht2<<" is taller";

return 0;

}

When Program 7.2 is executed, one of the output statements will be displayed. The

selection depends upon the relational expression ht1>ht2. The following are sample

outputs:

Output 1: Enter heights of the two students: 170 165

Student with height 170 is taller

Output 2: Enter heights of the two students: 160 171

Student with height 171 is taller

In the first output, we input 170 for ht1 and 165 for ht2. So, the test expression,
(ht1>ht2) is evaluated to True and hence the statement block of if is selected and
executed. In the second output, we input 160 for ht1 and 171 for ht2. The test
expression, (ht1>ht2) is evaluated and found False. Hence the statement block of
else is selected and executed.

In if...else statement, either the code associated with if (statement block 1) or
the code associated with else (statement block 2) is executed.

Let us see another program that uses an arithmetic expression as one of the operands
in the test expression. Program 7.3 uses this concept to check whether an input number
is even or odd.

Program 7.3: To check whether a given number is even or odd

#include <iostream>

using namespace std;

int main()

{

 int num;

192

cout << "Enter the number: ";

cin >> num;

if (num%2 == 0)

cout << "The given number is Even";

else

cout << "The given number is Odd";

return 0;

}

Some sample outputs of Program 7.3 are shown below:

Output 1:

Enter the number: 7

The given number is Odd

Output 2:

Enter the number: 10

The given number is Even

In this program, the expression (num%2) finds the remainder when num is divided
by 2 and compares it with the value 0. If they are equal, the if block is executed,
otherwise the else block is executed.

7.1.3 Nested if

In some situations there may arise the need to take a decision within if block. When
we write an if statement inside another if block, it is called nesting. Nested means
one inside another. Consider the following program segment:

if (score >= 60)

{

if(age >= 18)

cout<<"You are selected for the course!";

}

In this code fragment, if the value of score is greater than or equal to 60, the flow of
control enters the statement block of outer if. Then the test expression of the inner
if is evaluated (i.e. whether the value of age is greater than or equal to 18). If it is

outer if

inner if

1. Write a program to check whether a given number is a non-zero

integer number and is positive or negative.

2. Write a program to enter a single character for sex and display the

gender. If the input is 'M' display "Male" and if the input is 'F', display

"Female".

3. Write a program to input your age and check whether you are eligible

to cast vote (the eligibility is 18 years and above).

Let us do

7. Control Statements

193

evaluated to True, the code displays the message, "You are selected for the
course!". Then the program continues to execute the statement following the outer
if statement. An if statement, inside another if statement is termed as a nested

if statement. The following is an expanded form of nested if.

if (test expression 1)

{

if (test expression 2)

statement 1;

else

statement 2;

}

else

{

body of else ;

}

The important point to remember about nested if is that an else statement always
refers to the nearest if statement within the same block. Let us discuss this case with
an example. Consider the following program segment:

cout<<"Enter your score in Computer Science exam: ";

cin>>score;

if (score >= 18)

cout<<"You have passed";

if(score >= 54)

cout<<" with A+ grade !";

else

cout<<"\nYou have failed";

If we input the value 45 for score, the output will be as follows:

You have passed

You have failed

We know that this is logically not correct. Though the indentation of the code is proper,
that doesn’t matter in execution. The second if statement will not be considered as
nested if, rather it is counted as an independent if with an else block. So, when
the first if statement is executed, the if block is selected for execution since the test
expression is evaluated to True. It causes the first line in the output. After that, while
considering the second if statement, the test expression is evaluated to False and
hence the second line in the output is obtained. So to get the correct output, the code
should be modified as follows:

It will be

executed if both the test

expressions are True.

It will be executed if test expression 1 is

False. The test expression 2 is not evaluated.

It will be executed if test

expression 1 is True, but

test expression 2 is

False.

194

cout<<"Enter your score in Computer Science exam: ";

cin>>score;

if (score >= 18)

{

cout<<"You have passed";

if(score >= 54)

cout<<" with A+ grade !";

}

else

cout<<"\nYou have failed";

If we input the same value 45 as in the case of previous example, the output will be as
follows:

 You have passed

Program 7.4 uses nested if to find the largest among three given numbers. In this
program, if statement is used in both the if block and else block.

Program 7.4: To find the largest among three numbers

#include <iostream>

using namespace std;

int main()

{

int x, y, z;

cout << "Enter three different numbers: ";

cin >> x >> y >> z ;

if (x > y)

{

if (x > z)

cout << "The largest number is: " << x;

else

cout << "The largest number is: " << z;

}

else

 {

if (y > z)

cout << "The largest number is: " << y;

else

cout << "The largest number is: " << z;

}

return 0;

}

Nesting is enforced

by putting a pair of

braces

The else is now

associated with the

outer if

7. Control Statements

195

A sample output of Program 7.4 is given below:

Enter three different numbers: 6 2 7

The largest number is: 7

As per the input given above, the test expression (x>y) in the outer if is evaluated
to True and hence the control enters the inner if. Here the test expression (x>z) is
evaluated to False and so its else block is executed. Thus the value of z is displayed
as the output.

7.1.4 The else if ladder

There are situations where an if statement is used within an else block. It is used in
programs when multiple branching is required. Different conditions will be given and
each condition will decide which statement is to be selected for execution. A common
programming construct based on if statement is the else if ladder, also referred
to as the else if staircase because of its appearance. It is also known as
if...else if statement. The general form of else if ladder is:

if (test expression 1)

statement block 1;

else if (test expression 2)

statement block 2;

else if (test expression 3)

statement block 3;

...............

else

statement block n;

At first, the test expression 1 is evaluated and if it is True, the statement
block 1 is executed and the control comes out of the ladder. That means, the rest of
the ladder is bypassed. If test expression 1 evaluates to False, then the test
expression 2 is evaluated and so on. If any one of the test expressions evaluates
to True, the corresponding statement block is executed and control comes out of the
ladder. If all the test expressions are evaluated to False, the statement block n

1. Write a program to input an integer and check whether it is positive,

negative or zero.

2. Write a program to input three numbers and print the smallest one.

Check yourself

196

after the final else is executed. Observe the indentation provided in the syntax and
follow this style to use else if ladder.

Let us illustrate the working of the else if ladder by using a program to find the
grade of a student in a subject when the score out of 100 is given. The grade is found
out by the criteria given in the following table:

Scores Grade

80 or more A

From 60 to 79 B

From 40 to 59 C

From 30 to 39 D

Below 30 E

Program 7.5: To find the grade of a student for a given score

#include <iostream>

using namespace std;

int main()

{

int score;

cout << "Enter your score: ";

cin >> score;

if (score >= 80)

cout << "A Grade";

else if (score >= 60)

cout << "B Grade ";

else if (score >= 40)

cout << "C grade";

else if (score >= 30)

cout << "D grade";

else

cout << "E Grade";

return 0;

}

The following are the sample outputs of Program 7.5:

Output 1:
Enter your score: 73

B Grade

Output 2:
Enter your score: 25

E Grade

7. Control Statements

197

In Program 7.5, initially the test expression score>=80 is evaluated. Since the input is
73 in Output 1, the test expression is evaluated to False, and the next test expression
score>=60 is evaluated. Here it is True, and hence "B Grade" is displayed and the
remaining part of the else if ladder is bypassed. But in the case of Output 2, all
the test expressions are evaluated to False and so the final else block is executed
which makes "E Grade" as the output.

Let us write a program to check whether the given year is a leap year or not. The input
value should be checked to know whether it is century year (year divisible by 100). If it
is a century year, it becomes a leap year only if it is divisible by 400 also. If the input
value is not a century year, then we have to check whether it is divisible by 4. If it is
divisible the given year is a leap year, otherwise it is not a leap year.

Program 7.6: To check whether the given year is leap year or not

#include <iostream>

using namespace std;

void main()

{

int year ;

cout << "Enter the year (in 4-digits): ";

cin >> year;

if (year%100 == 0) // Checks for century year

{

if (year%400 == 0)

cout << "Leap year\n";

else

cout<< "Not a leap year\n";

}

else if (year%4 == 0)

cout << "Leap year\n";

else

cout<< "Not a leap year\n";

return 0;

}

Let us see some sample outputs of Program 7.6:

Output 1:

Enter the year (in 4-digits): 2000

Leap year

Output 2:

Enter the year (in 4-digits): 2014

Not a leap year

Non - century year

is leap year only if it

is divisible by 4

198

Output 3:

Enter the year (in 4-digits): 2100

Not a leap year

Output 4:

Enter the year (in 4-digits): 2004

Leap year

Let us write one more program to illustrate the use of else if ladder. Program 7.7
allows to input a number between 1 and 7 to denote the day of a week and display the
name of the corresponding day. The input 1 will give you “Sunday” as output, 2 will
give “Monday” and so on. If the input is outside the range 1 to 7, the output will be
“Wrong input”.

Program 7.7: To display the name of the day for a given day number

#include <iostream>

using namespace std;

int main()

{

int day;

cout << "Enter the day number (1-7): ";

cin >> day;

if (day == 1)

cout << "Sunday";

else if (day == 2)

cout << "Monday";

else if (day == 3)

cout << "Tuesday";

else if (day == 4)

cout << "Wednesday";

else if (day == 5)

cout << "Thursday";

else if (day == 6)

cout << "Friday";

else if (day == 7)

cout << "Saturday";

else

cout << "Wrong input";

return 0;

}

7. Control Statements

199

The following are some sample outputs of Program 7.7:

Output 1:

Enter the day number (1-7): 5

Thursday

Output 2:

Enter day number (1-7): 9

Wrong input

1. Write a program to input an integer number and check whether it is

positive, negative or zero using if ... else if statement.

2. Write a program to input a character (a, b, c or d) and print as follows:

a - abacus, b - boolean, c - computer, d - debugging.

3. Write a program to input a character and print whether it is an alphabet,

digit or any other character.

Check yourself

7.1.5 switch statement

We have seen the concept of multiple branching with the help of else if ladder.
Some of these programs can be written using another construct of C++ known as
switch statement. This selection statement successively tests the value of a variable
or an expression against a list of integers or character constants. The syntax of switch
statement is as follows:

switch(expression)

{

case constant_1 : statement block 1;

break;

case constant_2 : statement block 2;

break;

case constant_3 : statement block 3;

break;

:

:

case constant_n-1 : statement block n-1;

break;

default : statement block n;

}

200

In the syntax switch, case, break and default are keywords. The expression
is evaluated to get an integer or character constant and it is matched against the constants
specified in the case statements. When a match is found, the statement block associated
with that case is executed until the break statement or the end of switch statement
is reached. If no match is found, the statements in the default block get executed.
The default statement is optional and if it is missing, no action takes place when all
matches fail.

The break statement, used inside switch, is one of the jump statements in C++. When
a break statement is encountered, the program control goes to the statements following
the switch statement. We will discuss break statement in detail in Section 7.3.2.
Program 7.7 can be written using switch statement. It enhances the readability and
effectiveness of the code. Observe the modification in Program 7.8.

Program 7.8: To display the day of a week using switch statement

#include <iostream>

using namespace std;

int main()

{ int day ;

cout << "Enter a number between 1 and 7: ";

cin >> day ;

switch (day)

{

case 1: cout << "Sunday";

break;

case 2: cout << "Monday";

break;

case 3: cout << "Tuesday";

break;

case 4: cout << "Wednesday";

break;

case 5: cout << "Thursday";

break;

case 6: cout << "Friday";

break;

case 7: cout << "Saturday";

break;

default: cout << "Wrong input";

}

return 0;

}

7. Control Statements

201

The output of Program 7.8 will be the same as in Program 7.7. The following are
some samples:

Output 1:
Enter a number between 1 and 7: 5

Thursday

Output 2:
Enter a number between 1 and 7: 8

Wrong input

In Program 7.8, value of the variable day is compared against the constants specified
in the case statements. When a match is found, the output statement associated with
that case is executed. If we input the value 5 for the variable day, then the match
occurs for the fifth case statement and the statement cout << "Thursday"; is
executed. If the input is 8 then no match occurs and hence the default block is executed.

Can you predict the output of Program 7.8, if all the break statements are omitted?
The value returned by day is compared with the case constants. When the first match
is found the associated statements will be executed and the following statements will
also be executed irrespective of the remaining constants. There are situations where
we omit the break statements purposefully. If the statements associated with all the
case in a switch are the same, we only need to write the statement against the last
case. Program 7.9 illustrates this concept.

Program 7.9: To check whether the given character is a vowel or not

#include <iostream>

using namespace std;

int main()

{

char ch;

cout<<"Enter the character to check: ";

cin>>ch;

switch(ch)

{

case 'A' :

case 'a' :

case 'E' :

case 'e' :

case 'I' :

case 'i' :

case 'O' :

case 'o' :

202

case 'U' :

case 'u' : cout<<"The given character is a vowel";

 break;

default : cout<<"The given character is not a vowel";

}

return 0;

}

Some of the outputs given by Program 7.9 are shown below:

Output 1:
Enter the character to check: E

The given character is a vowel

Output 2:
Enter the character to check: k

The given character is not a vowel

Suitability and requirements for using switch

Though switch statement and else if ladder cause multiple branching, they do
not work in the same fashion. In C++ all switch statements can be replaced by else
if ladders, but all else if ladders cannot be substituted by switch. The following
are the requirements to implement a multi branching using switch statement:

• Conditions involve only equality checking. In other cases, it should be converted
into equality expression.

• The first operand in all the equality expressions should be the same variable or
expression.

• The second operand in these expressions should be integer or character constants.

Among the programs we have discussed so far in this chapter, only the branching in
Programs 7.3 and 7.7 can be replaced by switch. In Program 7.5, we can use switch
if we modify the test expressions as score/10==10, score/10==9, score/10==8,
and so on. So the following program fragment may be used instead of else if ladder.

switch(score/10)

{

case 10:

case 9: case 8: cout<< "A Grade"; break;

case 7: case 6: cout<< "B Grade"; break;

case 5: case 4: cout<< "C Grade"; break;

case 3: cout<< "D Grade"; break;

default: cout<< "E Grade";

}

Score being int type, the expression
returns only integer values

7. Control Statements

203

Let us have a comparison between switch and else if ladder as indicated in Table

7.1.

7.1.6 The conditional operator (?:)

As we mentioned in Chapter 6, C++ has a ternary operator. It is the conditional

operator (?:) consisting of the symbols ? and : (a question mark and a colon). It
requires three operands to operate upon. It can be used as an alternative to if...else
statement. Its general form is:

Test expression ? True_case code : False_case code;

Test expression can be any relational or logical expression and True_case code
and False_case code can be constants, variables, expressions or statement. The
operation performed by this operator is shown below with the help of an if statement.

if (Test expression)

{

True_case code;

}

else

{

False_case code;

}

The conditional operator works in the same way as if...else works. It evaluates
the test expression and if it is true, the True_case code is executed. Otherwise,
False_case code is executed. Program 7.10 illustrates the working of conditional
operator.

switch statement else if ladder

Table 7.1: Comparison between switch and else if ladder

• Permits multiple branching

• Evaluates conditions with equality operator only

• Case constant must be an integer or a character

type value

• When no match is found, default statement is

executed

• break statement is required to exit from

switch statement

• More efficient when the same variable or

expression is compared against a set of values

for equality

• Permits multiple branching

• Evaluates any relational or logical

expression

• Condition may include range of values

and floating point constants

• When no expression evaluates to True,

else block is executed

• Program control automatically goes out

after the completion of a block

• More flexible and versatile compared

to switch

204

Program 7.10: To find the larger number using the conditional operator

#include <iostream>

using namespace std;

int main()

{

int num1, num2;

cout << "Enter two numbers: ";

cin>> num1 >> num2 ;

(num1>num2)? cout<<num1<<" is larger" : cout<<num2<<" is larger";

return 0;

}

The last statement of this program is called conditional statement as it uses conditional
operator. This statement may be replaced by the following code segment:

int big = (num1>num2)? num1 : num2;

cout<< big << "is larger";

If the test expression evaluates to True, the value of num1 will be assigned to big,
otherwise that of num2. Here conditional operator is used to construct a conditional
expression. The value returned by this expression will be assigned to big. The following
is a complex form of conditional expression. It gives the largest among three numbers.
If n1, n2, n3 and big are integer variables,

big = (n1>n2) ? ((n1>n3)?n1:n3) : ((n2>n3)?n2:n3);

Refer to program 7.4 and see how the above conditional expression replaces the nesting
of if.

Check yourself

1. Write a program to input a number in the range 1 to 12 and display the

corresponding month of the year (January for the value 1, February for 2,

and so on).

2. Write a program to perform arithmetic operations using switch statement.

Accept two operands and a binary arithmetic operator as input.

3. What is the significance of break statement within a switch statement?

4. Write a program to enter a digit (0 to 9) and display it in words using switch

statement.

5. Write a program to input a number and check whether it is a multiple of 5

using selection statements and conditional operator.

6. Rewrite the following statement using if...else statement

result= mark>30 ? 'p' :' f';

7. Control Statements

205

7.2 Iteration statements

In Chapter 4, we discussed some problems for which the solution contains some tasks
that were executed repeatedly. While writing programs, we use some specific constructs
of the language to perform the repeated execution of a set of one or more statements.
Such constructs are called iteration statements or looping statements. In C++, we
have three iteration statements and all of them allow a set of instructions to be executed
repeatedly when a condition is True.

We use the concept of loop in everyday life. Let us consider a situation. Suppose your
class teacher has announced a gift for every student securing A+ grade in an examination.
You are assigned the duty of wrapping the gifts. The teacher has explained the procedure
for wrapping the gifts as follows:

Step 1 : Take the gift

Step 2 : Cut the wrapping paper

Step 3 : Wrap the gift

Step 4 : Tie the cover with a ribbon

Step 5 : Fill up a name card and paste it on the gift pack

If there are 30 students with A+ grade in the examination, you have to repeat the same
procedure 30 times. To repeat the wrapping process 30 times, the instructions can be
restructured in the following way.

Repeat the following steps 30 times

{ Take the next gift

Cut the wrapping paper

Wrap the gift

Tie the cover with a ribbon

Fill up a name card and paste on the gift pack

}

Let us take another example. Suppose we want to find the class average of scores
obtained in Computer Science. The following steps are to be performed:

Initially Total_Score has no value

Repeat the following steps starting from the first student till the last

{ Add Score of the student to the Total_Score

Take the Score of the next student

}

Average = Total_Score /No. of students in the class

206

In both the examples, we perform certain steps for a number of times. We use a counter
to know how many times the process is executed. The value of this counter decides
whether to continue the execution or not. Since loops work on the basis of such
conditions, a variable like the counter will be used to construct a loop. This variable is
generally known as loop control variable because it actually controls the execution of
the loop. In Chapter 4, we discussed four elements of a loop. Let us refresh them:

1. Initialisation: Before entering a loop, its control variable must be initialized.
During initialisation, the loop control variable gets its first value. The initialisation
statement is executed only once, at the beginning of the loop.

2. Test expression: It is a relational or logical expression whose value is either
True or False. It decides whether the loop-body will be executed or not. If the
test expression evaluates to True, the loop-body gets executed, otherwise it will
not be executed.

3. Update statement: The update statement modifies the loop control variable by
changing its value. The update statement is executed before the next iteration.

4. Body of the loop: The statements that need to be executed repeatedly constitute
the body of the loop. It may be a simple statement or a compound statement.

We learnt in Chapter 4 that loops are generally classified into entry-controlled loops
and exit-controlled loops. C++ provides three loop statements: while loop, for

loop and do-while loop. Let us discuss the working of each one in detail.

7.2.1 while statement

while loop is an entry-controlled loop. The condition is checked first and if it is
found True the body of the loop will be executed. That is the body will be executed as
long as the condition is True. The syntax of while loop is:

initialisation of loop control variable;

while(test expression)

{

body of the loop;

updation of loop control variable;

}

Here, test expression defines the condition which controls the loop. The body
of the loop may be a single statement or a compound statement or without any
statement. The body is the set of statements for repeated execution. Update
expression refers to a statement that changes the value of the loop control variable.

In a while loop, a loop control variable should be initialised before the loop begins

7. Control Statements

207

and it should be updated inside the body of the

loop. The flowchart in Figure 7.3 illustrates the

working of a while loop.

The initialisation of the loop control variable takes

place first. Then the test expression is

evaluated. If it returns True the body of the loop

is executed. That is why while loop is called an

entry controlled loop. Along with the loop body,

the loop control variable is updated. After

completing the execution of the loop body, test

expression is again evaluated. The process is

continued as long as the condition is True. Now,

let us consider a code segment to illustrate the

execution of while loop.

int k=1;

while(k<=3)

{

cout << k << '\t';

++k;

}

In this code segment, the value 1 is assigned to the variable k (loop control variable) at

first. Then the test expression k<=3 is evaluated. Since it is True, the body of the loop

is executed. That is the value of k is printed as 1 on the screen. After that the update

statement ++k is executed and the value of k becomes 2. The condition k<=3 is checked

again and found to be True. Program control enters the body of the loop and prints

the value of k as 2 on the screen. Again the update statement is executed and the value

of k is changed to 3. Since the condition is still True, body is executed and 3 is displayed

on the screen. The value of k is again updated to 4 and now the test expression is

evaluated to False. The control comes out of the loop and executes the next statement

after the while loop. In short, the output of the code will be:

1 2 3

Fig. 7.3: Working of while loop

Test

expression

Body of loop

Initialisation

before loop

Updation inside

the loop body

Fa lse

True

208

Imagine what will happen if the initial value of k is 5? The test expression is evaluated

to False in the first evaluation and the loop body will not be executed. This clearly

shows that while loop controls the entry into the body of the loop.

Let us see a program that uses while loop to print the first 10 natural numbers.

Program 7.11: To print the first 10 natural numbers

#include<iostream>

using namespace std;

int main()

{

int n = 1;

while(n <= 10)

 {

 cout<< n << " ";

 ++n;

 }

return 0;

}

The output of Program 7.11 will be as follows:

1 2 3 4 5 6 7 8 9 10

Program 7.12 uses while loop to find the sum of even numbers upto 20. This program

shows that the loop control variable can be updated using any operation.

Program 7.12: To find the sum of even numbers upto 20

#include<iostream>

using namespace std;

int main()

{

int i, sum = 0;

i = 2;

while(i<= 20)

{

 sum = sum + i;

 i = i + 2;

}

cout<<"\nThe sum of even numbers up to 20 is: "<<sum;

return 0;

}

The output of Program 7.12 is given below:

The sum of even numbers up to 20 is: 110

Test expression

Body of loop

Initialisation of loop

variable

Updating of loop

variable

Loop control variable is

updated by adding 2 to

the current value

7. Control Statements

209

7.2.2 for statement

for loop is also an entry-controlled loop in C++. All the three loop elements

(initialisation, test expression and update statement) are placed together in for

statement. So it makes the program compact. The syntax is:

for (initialisation; test expression; update statement)

{

body-of-the-loop;

}

The execution of for loop is the same as that of while

loop. The flowchart used for while can explain the

working of for loop. Since the three elements come

together this statement is more suitable in situations

where counting is involved. The flowchart given in

Figure 7.4 is commonly used to show the execution of

for statement. At first, the initialisation takes place and then the test

expression is evaluated. If its result is True, body-of-the-loop is executed,

otherwise the program control goes out of the for loop. After the execution of the

loop body, update expression is executed and again test expression is

evaluated. These three steps (test, body, update) are continued until the test

expression is evaluated to False.

The loop segment used in Program 7.11 can be replaced with a for loop as follows:

for (n=1; n<=10; ++n)

 cout << n << " ";

This code is executed in the same way as in the case of while loop.

If we put a semi colon (;) after the test expression of while

statement, there will not be any syntax error. But the statements

within the following pair of braces will not be considered as loop

body. The worst situation is that, if the test expression is evaluated

to be True, neither the code after the while loop will be executed nor the

program will be terminated. It is a case of infinite loop.

1. Modify the Program 7.11 to display all odd numbers between 100

and 200.

2. Modify the Program 7.12 to find the average of the first N natural

numbers.
Let us do

Fig. 7.4: Execution of for loop

False

True

210

Let us write a program using for loop to find the factorial of a number. Factorial of

a number, say N, represented as N!, is the product of the first N natural numbers. For

example, factorial of 5 (5!) is calculated by 1 × 2 × 3 × 4 × 5 = 120.

Program 7.13: To find the factorial of a number using for loop

#include <iostream>

using namespace std;

int main()

{ int n, i;

long fact=1;

cout<<"Enter the number: ";

cin>>n;

for (i=1; i<=n; ++i)

 fact = fact * i;

cout << "Factorial of " << n << " is " << fact;

return 0;

}

The following is a sample output of program 7.13

Enter the number: 6

Factorial of 6 is 720

Another program is given below which gives the class average of scores obtained in

Computer Science. Program 7.14 accepts the value for n as the number of students,

then reads the scores of each student and prints the average score.

Program 7.14: To find the average score of n students

#include<iostream>

using namespace std;

int main()

{

int i, sum, score, n;

float avg;

cout << "How many students? ";

cin >> n ;

The steps 1 and 2 in the execution sequence of the for loop just

mentioned before are given below. Write down the remaining steps.

Step 1: n =1, Condition is True, 1 is displayed, n becomes 2

Step 2: Condition is True, 2 is displayed, n becomes 3

Step 3: ……………
Let us do

Initialisation; Test

Expression; Updation

Loop body

7. Control Statements

211

for(i=1, sum=0; i<=n; ++i)

{

cout << "Enter the score of student " << i << ": ";

cin >> score;

sum = sum + score;

}

avg = (float)sum / n;

cout << "Class Average: " << avg;

return 0;

}

The following is a sample output of Program 7.14 for 5 students

How many students? 5

Enter the score of student 1: 45

Enter the score of student 2: 50

Enter the score of student 3: 52

Enter the score of student 4: 34

Enter the score of student 5: 55

Class Average: 47.2

In Program 7.14, the initialisation contains two expressions i=1 and sum=0 separated

by comma. The initialisation part may contain more than one expression, but they

should be separated by comma. Both the variables i and sum get their first values 1

and 0, respectively. Then, the test expression i<=n is evaluated to be True and body

of the loop is executed. After the execution of the body of the loop the update

expression ++i is executed. Again the test expression i<=n is evaluated, and body of

the loop is executed since the condition is True. This process continues till the test

expression returns False. It has occurred in the sample output when the value of i

becomes 6.

While using for loops certain points are to be noted. The given four code segments

explain these special cases. Assume that all the variables used in the codes are declared

with int data type.

Write a program to display the multiplication table of a given number.

Assume that the number will be the input to the variable n. The body of

the loop is given below:

cout<<i<<" x "<<n<<" = "<< i * n <<"\n";

 Give the output also.
Let us do

Initialisation contains

two expressions

Explicit type

conversion

212

Code segment 1: for (n=1; n<5; n++);

 cout<<n;

A semicolon appears after the parentheses of for statement. It is not a syntax error.
Can you predict the output? If it is 5, you are correct. This loop has no body. But its
process will be completed as usual. The initialisation assigns 1 to n and the condition
is evaluated to True. Since there is no loop body update takes place and the process
continues till n becomes 5. At that point, condition is evaluated to be False and the
program control comes out of the loop. The output statement then displays 5 on the
screen.

Code segment 2: for (n=1; n<5;)

 cout<<n;

In this code, update expression is not present. It does not make any syntax error in the
code. But on execution, the loop will never be terminated. The number 1 will be
displayed infinitely. We call this an infinite loop.

Code segment 3: for (; n<5; n++)

 cout<<n;

The output of this code cannot be predicted. Since there is no initialisation, the control
variable n gets some integer value. If it is smaller than 5, the body will be executed
until the condition becomes False. If the default value of n is greater than or equal to
5, the loop will be terminated without executing the loop body.

Code segment 4: for (n=1; ; n++)

 cout<<n;

The test expression is missing in this code. C++ takes this absence as True and obviously
the loop becomes an infinite loop.

The four code segments given above reveal that all the elements of a for loop are
optional. But this is not the case for while and do...while statements. Test expression
is compulsory for these two loops. Other elements are optional, but be cautious about
the output.

Another aspect to be noted is that we can provide a number instead of the test
expression. If it is zero it will be treated as False, otherwise True.

Check yourself

1. Write a program to find the sum and average of all even numbers between

1 and 49.

2. Write a program to print the numbers between 10 and 50 which are divisible

by both 3 and 5.

3. Predict the output of the following code

for(int i=1; i<=10; ++i);

 cout << i+2;

7. Control Statements

213

7.2.3 do...while statement

In the case of for loop and while loop, the test
expression is evaluated before executing the body of the
loop. If the test expression evaluates to False for the first
time itself, the body is never executed. But in some
situations, it is necessary to execute the loop body at least
once, without considering the result of the test expression.
In that case the do...while loop is the best choice. Its
syntax is :

initialisation of loop control variable;
do

{

body of the loop;

updation of loop control variable;

} while(test expression);

Figure 7.5 shows the order of execution of this loop.
Here, the test expression is evaluated only after
executing body of the loop. So do...while loop
is an exit controlled loop. If the test expression
evaluates to False, the loop will be terminated. Otherwise, the execution process will
be continued. It means that in do...while loop the body will be executed at least
once irrespective of the result of the condition.

Let us consider the following program segment to illustrate the execution of
do...while loop.

int k=1;

do

{

cout << k << '\t';

++k;

} while(k<=3);

At first, the value 1 is assigned to the variable k. Then body of the loop is executed
and the value of k is printed as 1. After that the k is incremented by 1 (now k=2). Then
it checks the condition k<=3. Since it is found True the body of the loop is executed
to print the value of k, i.e. 2 on the screen. Again the updation process is carried out,

Fig. 7.5: Execution of
do..while loop

Initialisation before

the loop

Body of loop

Updation inside

the loop body

Test expression

False

True

214

which makes value of k as 3 and the condition k<=3 is checked again. As it is True, the

body of the loop is executed to print the value 3. The variable k is again updated to 4

and now the condition is evaluated to be False. It causes the program control to come

out of the loop and executes the next statement after the loop body. Thus the output

of the code will be:

1 2 3

Now let us see how this loop differs from the other two. Imagine that the initial value

of k is 5. What will happen? The body of the loop is executed and the value of k will

be printed on the screen as 5. After that the variable k will be updated by incrementing

it by 1 and k becomes 6. On checking the condition k<=3, the test expression is

evaluated to False and the control comes out of the loop. This clearly shows that in

do...while loop there is no restriction to enter the loop body for the first time. So

if we want the body to be executed based on the True value of the condition, use

while or for loops.

Let us see an interactive program in the sense that some part of the code will be

executed on user’s choice. The simplest form of such programs provides facility to

accept user’s response for executing a code segment repeatedly. Program 7.15 illustrates

the use of do...while loop to write an interactive program to find the area of

rectangles by accepting the length and breadth of each rectangle from the user.

Program 7.15: To find the area of rectangles

#include <iostream>

using namespace std;

int main()

{

float length, breadth, area;

char ch;

do

{

cout << "Enter length and breadth: ";

cin >> length >> breadth;

area = length * breadth;

cout << "Area = " << area;

cout << "Any more rectangle (Y/N)? ";

cin >> ch;

} while (ch == 'Y' || ch == 'y');

return 0;

}

7. Control Statements

215

A sample output of Program7.15 is given below:

Enter length and breadth: 3.5 7

Area = 24.5

Any more rectangle (Y/N)? Y

Enter length and breadth: 6 4.5

Area = 27

Any more rectangle (Y/N)? N

We have discussed all the three looping statements of C++. Table 7.2 shows a
comparison between these statements.

Entry controlled loop

Initialization along with loop
definition

No guarantee to execute the
loop body at least once

Exit controlled loop

Initialization before loop
definition

Will execute the loop body at
least once even though the
condition is False

Entry controlled loop

Initialization before loop
definition

No guarantee to execute the
loop body at least once

for loop while loop do...while loop

Table 7.2: Comparison between the looping statements of C++

7.2.4 Nesting of loops

Placing a loop inside the body of another loop is called nesting of a loop. When we

nest two loops, the outer loop counts the number of completed repetitions of the

inner loop. Here the loop control variables for the two loops should be different.

Let us observe how a nested loop works. Take the case of a minute-hand and second-

hand of a clock. Have you noticed the working of a clock?. While the minute-hand

stands still at a position, the second-hand moves to complete one full rotation (say 1

to 60). The minute hand moves to the next position (that is, the next minute) only after

the second hand completes one full rotation. Then the second-hand again completes

another full rotation corresponding to the minute-hand’s current position. For each

position of the minute-hand, second-hand completes one full rotation and the process

goes on. Here the second hand movement can be treated as the execution of the inner

loop and the minute-hand’s movement can be treated as the execution of the outer

loop.

All types of loops in C++ allow nesting. An example is given to show the working

procedure of a nested for loop.

User Input

User Input

User Input

216

for(i=1; i<=2; ++i)

{

for(j=1; j<=3; ++j)

{

cout<< "\n" << i << " and " << j;

}

}

Initially value 1 is assigned to the outer loop variable i. Its test expression is evaluated
to be True and hence the body of the loop is executed. The body contains the inner
loop with the control variable j and it begins to execute by assigning the initial value
1 to j. The inner loop is executed 3 times, for j =1, j=2, j=3. Each time it evaluates
the test expression j<=3 and displays the output since it is True.

1 and 1

1 and 2

1 and 3

When the test expression j<=3 is False, the program control comes out of the inner
loop. Now the update statement of the outer loop is executed which makes i=2.
Then the test expression i<=2 is evaluated to True and once again the loop body (i.e.
the inner loop) is executed. Inner loop is again executed 3 times, for j=1, j=2, j=3
and displays the output.

2 and 1

2 and 2

2 and 3

After completing the execution of the inner loop, the control again goes back to the
update expression of the outer loop. Value of i is incremented by 1 (Now i=3) and
the test expression i<=2 is now evaluated to be False. Hence the loop terminates its
execution. Table 7.3 illustrates the execution of the above given program segment:

Table 7.3: Execution of a nested loop

Outer loop

Inner loop

The first 1 is of i

and the second 1 is

of j

Iterations Outer loop Inner loop Output

1 1 1 1 and 1

2 1 2 1 and 2

3 1 3 1 and 3

4 2 1 2 and 1

5 2 2 2 and 2

6 2 3 2 and 3

7. Control Statements

217

When working with nested loops, the control variable of the outer loop changes its
value only after the inner loop is terminated. Let us write a program to display the
following triangle using nested loop:

*

* *

* * *

* * * *

* * * * *

Program 7.16 : To display a triangle of stars

#include<iostream>

using namespace std;

int main()

{ int i, j;

char ch = '*';

for(i=1; i<=5; ++i) //outer loop

{

cout<< "\n" ;

for(j=1; j<=i; ++j) // inner loop

cout<<ch;

}

return 0;

}

1. Predict the output of the following program segment:

sum = 0;

for (i=1; i<3; ++i)

{

for (j=1; j<3; ++j)

 sum = sum + i * j ;

}

cout<<sum;

2. Write C++ programs to display the following triangles:

1 1

2 2 1 2

3 3 3 1 2 3

4 4 4 1 2 3 4

5 5 5 5 1 2 3 4 5

Let us do

218

7.2.5 Nesting of control statements

We have discussed nesting of if and nesting of loops. Any control statement can be
nested with another control statement. A loop can contain a selection statement such
as if or switch. Similarly, a selection statement can contain a loop such as while,
for or do...while. Program 7.17 contains a loop and its body includes a switch
statement. It is the usual style of a menu driven program.

Program 7.17: To input two numbers and perform an arithmetic operation based

on user’s choice

#include<iostream>

using namespace std;

int main()

 {

char ch;

float n1, n2;

cout<<"Enter two numbers: ";

cin>>n1>>n2;

do

{

cout<<"\nNumber 1: “<<n1<<“\tNumber 2: "<<n2;

cout<<"\n\t\tOperator Menu";

cout<<"\n\t1. Addition (+)";

cout<<"\n\t2. Subtraction (–)";

cout<<"\n\t3. Multiplication (*)";

cout<<"\n\t4. Division (/)";

cout<<"\n\t5. Exit (E)";

cout<<"\nEnter Option number or operator: ";

cin>>ch;

switch(ch)

{

case '1' :

case '+' : cout<<n1<<" + "<<n2<<" = "<<n1+n2;

 break;

case '2' :

case '-' : cout<<n1<<" - "<<n2<<" = "<<n1-n2;

 break;

case '3' :

case '*' : cout<<n1<<" * "<<n2<<" = "<<n1*n2;

 break;

case '4' :

case '/' : cout<<n1<<" / "<<n2<<" = "<<n1/n2;

 break;

7. Control Statements

219

case '5' :

case 'E' :

case 'e' : cout<<"Thank You for using the program";

 break;

default : cout<<"Invalid Choice!!";

}

} while (ch!='5' && ch!='E' && ch!='e');

return 0;

}

The following is a sample output of Program 7.17:

Enter two numbers: 25 4

Number 1: 25 Number 2: 4

Operator Menu

1. Addition (+)

2. Subtraction (–)

3. Multiplication (*)

4. Division (/)

5. Exit (E)

Enter Option number or operator: 1

25 + 4 = 29

Number 1: 25 Number 2: 4

Operator Menu

1. Addition (+)

2. Subtraction (–)

3. Multiplication (*)

4. Division (/)

5. Exit (E)

Enter Option number or operator: /

25 / 4 = 6.25

Number 1: 25 Number 2: 4

Operator Menu

1. Addition (+)

2. Subtraction (–)

3. Multiplication (*)

4. Division (/)

5. Exit (E)

Enter Option number or operator: 5

Thank You for using the program

User Input

User Input

User Input

220

We will discuss more programs using various combinations of nesting of control
statements in the Program gallery section.

7.3 Jump statements

The statements that facilitate the transfer of program control from one place to another
are called jump statements. C++ provides four types of jump statements that perform
unconditional branching in a program. They are return, goto, break and continue
statements. In addition, C++ provides a standard library function exit()that helps
us to terminate a program.

The return statement is used to transfer control back to the calling program or to
come out of a function. It will be explained in detail later in Chapter 10. Now, we will

discuss the other jump statements.

7.3.1 goto statement

The goto statement can transfer the program control to anywhere in the function.
The target destination of a goto statement is marked by a label, which is an identifier.

The syntax of goto statement is:

goto label;

............;

............;

label:;

............;

where the label can appear in the program either before or after goto statement.
The label is followed by a colon (:) symbol. For example, consider the following
code fragment which prints numbers from 1 to 50.

 int i=1;

start:

 cout<<i;

 ++i;

 if (i<=50)

 goto start;

Here, the cout statement prints the value 1. After that i is incremented by 1 (now
i=2), then the test expression i<=50 is evaluated. Since it is True the control is transferred
to the statement marked with the label start. When the test expression evaluates to
False, the process terminates and transfers the program control following the if
statement.

Let us see another example. Here a number is accepted and tested with a pre-defined
value. If it matches, the program continues, otherwise it terminates.

Label

7. Control Statements

221

 int p;

 cout<<"Enter the Code: ";

 cin>>p;

 if(p!=7755)

goto end;

 cout<<"Enter the details";

 ;

 ;

end:

 cout<<"Sorry, the code number is wrong. Try again!";

Here the program validates the user input. The program accepts other details only if
it is a valid code, otherwise the control goes to the label end. It is to be noted that the

usage of goto is not encouraged in structured programming.

7.3.2 break statement

When a break statement is encountered in a program, it takes the program control
outside the immediate enclosing loop (for, while, do...while) or switch
statement. Execution continues from the statement immediately after the control
structure. We have already discussed the impact of break in switch statement.
Let us see how it affects the execution of loops. Consider the following two program
segments.

Code segment 1:

i=1;

while(i<=10)

{

cin>>num;

if (num==0)

break;

cout<<"Entered number is: "<<num;

cout<<"\nInside the loop";

++i;

}

cout<<"\nComes out of the loop";

The above code fragment allows to input 10 different numbers. During the input if
any number happens to be 0, the program control comes out of the loop by skipping
the rest of the statements within the loop-body and displays the message “Comes
out of the loop” on the screen. Let us consider another code segment that uses
break within a nested loop.

Label

222

Code segment 2:

for(i=1; i<=5; ++i) //outer loop

{

cout<<"\n";

for(j=1; j<=i; ++j) //inner loop

{

cout<<"* ";

if (j==3)

break;

}

}

This code segment will display the following pattern:

*

* *

* * *

* * *

* * *

The nested loop executes normally for the value of i=1, i=2, i=3. For each value
of i, the variable j takes values from 1 to i. When the value of i becomes 4, the
inner loop executes for the value of j = 1, j=2, j=3 and comes out from the inner

loop on executing the break statement.

7.3.3 continue statement

continue statement is another jump statement used for skipping over a part of the
code within the loop-body and forcing the next iteration. The break statement forces
termination of the loop, but continue statement forces next iteration of the loop.

The following program segment explains the working of continue statement:

for (i=1; i<=10; ++i)

{

if (i==6)

continue;

cout<<i<<"\t";

}

This code gives the following output:

1 2 3 4 5 7 8 9 10

Note that 6 is not in the list. When the value of i becomes 6 the continue statement
is executed. As a result, the output statement is skipped and program control goes to
the update expression for next iteration.

Whenever j

becomes 3, the inner

loop terminates

7. Control Statements

223

A break statement inside a loop will abort the loop and transfer control to the

statement following the loop. A continue statement will just abandon the current

iteration and let the loop start next iteration. When continue statement is used within

while and do...while loops, care should be taken to avoid infinite execution. Table

7.4 shows a comparison between break and continue statements.

• Used with switch and loops.

• Brings the program control outside
the switch or loop by skipping
the rest of the statements within
the block.

• Program control goes out of the
loop even though the test
expression is True.

• Used only with loops.

• Brings the program control to the
beginning of the loop by skipping
the rest of the statements within
the block.

• Program control goes out of the
loop only when the test expression
becomes False.

Table 7.4: Comparison between the break and continue statements

break statement continue statement

C++ provides a built-in function exit() which terminates the program itself. The

exit() function can be used in a program only if we include the header file cstdlib

(process.h.in Turbo C++). Program 7.18 illustrates the working of this function.

Program 7.18: To check whether the given number is prime or not

#include <iostream>

#include <cstdlib>

using namespace std;

int main()

{

int i, num;

cout<<"Enter the number: ";

cin>>num;

for(i=2; i<=num/2; ++i)

{

if(num%i == 0)

{

cout<<"Not a Prime Number";

exit(0);

}

}

cout<<"Prime Number";

return 0;

}

224

Program gallery

This section contains a collection of programs which use different control statements
for solving various problems. The sample outputs of the programs are also given
after each program.

Program 7.19 accepts the three coefficients of a quadratic equation of the form ax2 +
bx + c = 0 and calculates its roots. The value of a should not be 0 (zero). To solve this
problem, the discrminent value of the quadratic equation is to be determined using
the formula (b2 – 4ac), to identify the nature of the roots. Formula is also available to
find the roots. In this program we use the function sqrt() to get the square root of a
number. The header file math.h is to be included in the program to use this function.

The test expression in the for loop of Program 7.18 can be replaced
by i<=sqrt(num), where sqrt() is a function which gives the
square root of the given number. If a number has no factors from
2 to its squrae root, the number will be a prime number. To use
sqrt(), we have to include the statement #include<cmath>

Check yourself

1. The goto statement causes control to go to

(a) an operator (b) a Label (c) a variable (d) a function

2. A break statement causes an exit

(a) only from the innermost loop.

(b) only from the innermost switch.

(c) from all loops and switches.

(d) from the innermost loop or switch.

3. The exit() function takes the control out of

(a) the function it appears in.

(b) the loop it appears in.

(c) the block it appears in.

(d) the program it appears in.

4. Name the header file to be included for using exit() function.

Some sample outputs of program 7.18 are shown below:
Output 1:

Enter the number: 17

Prime Number

Output 2:

Enter the number: 18

Not a Prime Number

7. Control Statements

225

Program 7.19: To find the roots of a quadratic equation

#include <iostream>

#include <cmath>// to use sqrt()function

using namespace std;

int main()

{

float a, b, c, root1, root2, d;

cout<< "Enter the three coefficients: ";

cin >> a >> b >> c ;

if (!a) // equivalent to if (a == 0)

cout<<"Value of \'a \' should not be zero\n"

 <<"Aborting!!!!!\n";

else

{

d =b*b-4*a*c; //beginning of else block

if (d > 0)

{

root1 = (-b + sqrt(d))/(2*a);

root2 = (-b - sqrt(d))/(2*a);

cout<<"Roots are REAL and UNEQUAL\n";

cout<<"Root1 = "<<root1<<"\tRoot2 = "<<root2;

}

else if (d == 0)

{

root1 = -b/(2*a);

cout<<"Roots are REAL and EQUAL\n";

cout<<"Root1 =" <<root1;

}

else

cout<<"Roots are COMPLEX and IMAGINARY";

}// end of else block of outer if

return 0;

}

Output 1:
Enter the three coefficients: 2 3 4

Roots are COMPLEX and IMAGINARY

Output 2:
Enter the three coefficients: 3 5 1

Roots are REAL and UNEQUAL

Root1 = -0.232408 Root2 = -1.434259

226

Program 7.20 displays the first N terms of the Fibonacci series. This series begins
with terms 0 and 1. The next term onwards will be the sum of the last two terms. The
series is 0, 1, 1, 2, 3, 5, 8, 13, ……

Program 7.20: To print n terms of the Fibonacci series

#include <iostream>

using namespace std;

int main()

{

int first=0, second=1, third, n;

cout<<"\nEnter number of terms in the series: ";

cin>>n;

cout<<first<<"\t"<<second;

for(int i=3; i<=n; ++i)

{

third = first + second;

cout<<"\t"<<third;

first = second;

second = third;

}

return 0;

}

Output:

Enter number of terms in the series: 10

0 1 1 2 3 5 8 13 21 34

Program 7.21 reads a number and checks whether it is palindrome or not. A number
is said to be palindrome if it is equal to its image. By the term image, we mean a
number obtained by reversing the digits of the original number. That is, the image of
163 is 361. Since these two are not equal the number 163 is not palindrome. The
number 232 is a palindrome number.

Program 7.21: To check whether the given number is palindrome or not

#include <iostream>

using namespace std;

int main()

{

int num, copy, digit, rev=0;

cout<<"Enter the number: ";

cin>>num;

copy=num;

The value of num will
be 0 after the completion of
loop. That is why the original
value is copied into another

variable

If the variables first and second

are initialised with the values -1 and

+1 respectively, we can avoid the

cout statement for displaying the

first two terms.

7. Control Statements

227

while(num != 0)

{

digit = num % 10;

rev = (rev * 10)+ digit;

num = num/10;

}

cout<<"The reverse of the number is: "<<rev;

if (rev == copy)

cout<<"\nThe given number is a palindrome.";

else

cout<<"\nThe given number is not a palindrome.";

return 0;

}

Output 1:

Enter the number: 363

The reverse of the number is: 363

The given number is a palindrome.

Output 2:

Enter the number: 257

The reverse of the number is: 752

The given number is not a palindrome.

Program 7.22: To accept n integers and print the largest among them

#include <iostream>

using namespace std;

int main()

{

int num, big, count;

cout<<"How many Numbers in the list? ";

cin >> count;

cout<<"\nEnter first number: ";

cin >> num;

big = num;

for(int i=2; i<=count; i++)

{

cout<<"\nEnter next number: ";

cin >> num;

if(num > big) big = num;

}

cout<<"\nThe largest number is " << big;

return 0;

}

228

1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012
1234567890123456789012345678901212345678901234567890123456789012123456789012

Output:

How many Numbers in the list? 5

Enter first number: 23

Enter next number: 12

Enter next number: -18

Enter next number: 35

Enter next number: 18

The largest number is 35

Learning outcomes

After the completion of this chapter the learner will be able to

• use control statements in C++ for problem solving.

• identify the situation where control statements are used in a program.

• use correct control statements suitable for the situations.

• categorise different types of control statements.

• identify different types of jump statements in C++.

• write C++ programs using control statements.

 Sample questions

Very short answer type

1. Write the significance of break statement in switch statement. What is the effect
of absence of break in a switch statement?

2. What will the output of the following code fragment be?

for(i=1;i<=10;++i) ;

cout<<i+5;

The statements providing facilities for taking decisions or for performing
repetitive actions in a program are known as control statements. The control
statements are the backbones of a computer program. In this chapter we
covered the different types of control statements such as selection statements
(if, if…else, if…else if, switch), iteration statements (for, while,
do…while) and also jump statements (goto, break, continue, exit()
function). All these control statements will help us in writing efficient C++
programs.

Let us sum up

7. Control Statements

229

3. Rewrite the following statement using while and do while loops.

for (i=1; i<=10; i++) cout<<i;

4. How many times will the following loop execute?

int s=0, i=0;

while(i++<5)

s+=i;

5. Write the name of the header file which contains the exit() function.

6. Which statement in C++ can transfer control of the program to a named label?

7. Write the purpose of default statement in switch statement.

Short answer type

1. Consider two program fragments given below.

// version 1 //version 2

cin>>mark; cin>>mark;

if (mark > = 90) if (mark>=90)

cout<<“ A+”; cout<<“ A+”;

if (mark > = 80 && mark <90) else if (mark>=80 && mark <90)

cout<<“ A”; cout<<“ A”;

if (mark > = 70 && mark <80) else if (mark>=70 && mark <80)

cout<<“ B+”; cout<<“ B+”;

if (mark > = 60 && mark <70) else if (mark>=60 && mark <70)

cout<<“ B”; cout<<“ B”;

Discuss the advantages of version 2 over version 1.

2. Briefly explain the working of a for loop along with its syntax. Give an example
of for loop to support your answer.

3. Compare and discuss the suitability of three loops in different situations.

4. Consider the following if else if statement. Rewrite it with switch statement.

if (a==1)

cout << “One”;

else if (a==0)

cout << “Zero”;

else

cout << “Not a binary digit”;

5. What is wrong with the following while statement if the value of z = 3?

while(z>=0)

 sum+=z;

230

6. What will the output of the following code fragments be?

for (outer=10; outer > 5; --outer)

{

for (inner=1; inner<4; ++inner)

cout<<outer <<"\t"<<inner <<endl;

}

7. What will the output of the given code fragments be? Explain.

for (n = 1; n <= 10; ++n)

{

for (m=1; m <= 5 ; ++m)

num = n*m;

cout<<num <<endl;

}

8. Write the importance of a loop control variable. Briefly explain the different
parts of a loop.

Long answer type

1. What output will be produced by the following code fragment?

int val, res, n=1000;

cin>>val;

res = n+val > 1750 ? 400 : 200;

(a) If the input is 2000

(b) If the input is 500

2. Write a program to find the sum of digits of a number using
(a) Entry controlled loop.
(b) Exit controlled loop.

3. Write a program to print Armstrong numbers less than 1000. (An Armstrong
number is a number which is equal to the sum of cubes of its digits. Eg. 153 =
13+53+33)

4. Explain the different jump statements available in C++.

5. Write a program to produce the following output using nested loop:

A
A B
A B C
A B C D
A B C D E

8. Suppose you forgot to write the word else in an if…else statement. Discuss
how it will affect the output of your program?

