
1

lllll String handling using arrays

lllll Memory allocation for

strings

lllll Input/output operations on

strings

lllll Console functions for

Character I/O

o getchar()

o putchar()

lllll Stream functions for I/O

operations

o Input functions - get(),

getline()

o Output functions - put(),

write()

Key Concepts

We have learnt that array is the effective
mechanism to handle large number of
homogeneous type of data. Most of the
programs that we discussed are used to process
numeric type data. We know that there are
string type data also. In this chapter we will see
how string data are stored and processed. Also
we will discuss some built-in functions to
perform input/output operations on string
and character data.

9.1 String handling using arrays

We know that string is a kind of literal in C++
language. It appears in programs as a sequence
of characters within a pair of double quotes.
Imagine that you are asked to write a program
to store your name and display it. You have
learned that variables are required to store data.
Let us take the identifier my_name as the
variable. Remember that in C++, a variable is
to be declared before it is used. A declaration
statement is required for this and it begins with
a data type. Which data type should be used to
declare a variable to hold string data? There is
no basic data type to represent string data. You
may think of char data type. But note that the
variable declared using char can hold only one
character. Here we have to input string which
is a sequence of characters.

9

260

Let us consider a name “Niketh”. It is a string consisting of six characters. So it
cannot be stored in a variable of char type. But we know that an array of char
type can hold more than one character. So, we declare an array as follows:

char my_name[10];

It is sure that ten contiguous locations, each with one byte size, will be allocated for
the array named my_name. If we follow the usual array initialization method, we
can store the characters in the string “Niketh” as follows:

char my_name[10]={'N', 'i', 'k', 'e', 't', 'h'};

Figure 9.1 shows the memory allocation for the above declared character array.
Note that we store the letters in the string, separated by commas. If we want to
input the same data, the following C++ statement can be used:

for (int i=0; i<6; i++)

 cin >> my_name[i];

During the execution of this statement, we have to input six letters of “Niketh”
one after the other separated by Space bar, Tab or Enter key. The memory allocation
in both of these cases may be shown as follows:

So, let us conclude that a character array can be used to store a string, since it is a
sequence of characters. However, it is true that we do not get the feel of inputting
a string. Instead, we input the characters constituting the string one by one.

In C++, character arrays have some privileges over other arrays. Once we declare a
character array, the array name can be considered as an ordinary variable that can
hold string data. Let’s say that a character array name is equivalent to a string variable.
Thus your name can be stored in the variable my_name (the array name) using the
following statement:

cin >> my_name;

It is important to note that this kind of usage is wrong in the case of arrays of other
data types. Now let us complete the program. It will be like the one given in Program
9.1.

Fig. 9.1 : Memory allocation for the character array

my_name

N i k e t h

0 1 2 3 4 5 6 7 8 9

Subscripts

Elements

Array Name

9. String Handling and I/O Functions

261

Program 9.1: To input a string and display

#include <iostream>

using namespace std;

int main()

{

char my_name[10];

cout << "Enter your name: ";

cin >> my_name;

cout << "Hello " << my_name;

}

On executing this program you will get the output as shown below.

Enter your name: Niketh

Hello Niketh

Note that the string constant is not "Hello", but "Hello " (a white space is

given after the letter o).

Note that a null character '\0' is stored at the end of the string. This character is

used as the string terminator and added at the end automatically. Thus we can say

that memory required to store a string will be equal to the number of characters in

the string plus one byte for null character. In the above case, the memory used to

store the string Niketh is seven bytes, but the number of characters in the string is

only six.

Run Program 9.1 and input your full name by expanding the initials

if any, and check whether the output is correct or not. If your name

contains more than 10 characters, increase the size of the array as

needed.Let us do

9.2 Memory allocation for strings

We have seen how memory is allocated for an array of characters. As Figure 9.1

shows, the memory required depends upon the number of characters stored. But if

we input a string in a character array, the scene will be different. If we run Program

9.1 and input the string Niketh, the memory allocation will be as shown in Figure

9.2.
Null character '\0' is stored

at the end of the string

Fig. 9.2 : Memory allocation for the character array

my_name

N i k e t h \0

0 1 2 3 4 5 6 7 8 9

Array Name

262

As in the case of variable initialization, we can initialize a character array with a
string as follows:

char my_name[10] = "Niketh";

char str[] = "Hello World";

In the first statement 10 memory locations will be allocated and the string will be
stored with null character as the delimiter. The last three bytes will be left unused.
But for the second statement, size of the array is not specified and hence only 12
bytes will be allocated (11 bytes for the string and 1 for '\0').

9.3 Input/Output operations on strings

Program 9.1 contains input and output statements for string data. Let us modify
the declaration statement by changing the size of the array to 20. If we run the
program by entering the name Maya Mohan, the output will be as follows:

Enter your name: Maya Mohan

Hello Maya

Note that though there is enough size for the array, we get only the word "Maya"
as the output. Why does this happen?

Let us have a close look at the input statement: cin>>my_name;. We have
experienced that only one data item can be input using this statement. A white
space is treated as a separator of data. Thus, the input Maya Mohan is treated as
two data items, Maya and Mohan separated by white space. Since there is only one
input operator (>>) followed by a variable, the first data (i.e., Maya) is stored. The
white space after "Maya" is treated as the delimiter.

So, the problem is that we are unable to input strings containing white spaces. C++
language gives a solution to this problem by a function, named gets(). The function
gets() is a console input function used to accept a string of characters including
white spaces from the standard input device (keyboard) and store it in a character
array.

The string variable (character array name) should be provided to this function as
shown below:

gets(character_array_name);

When we use this function, we have to include the library file stdio.h in the
program. Let us modify Program 9.1, by including the statement
#include<cstdio>, and replacing the statement cin>>my_name; by
gets(my_name);. After executing the modified program, the output will be as follows:

Enter your name: Maya Mohan

Hello Maya Mohan

9. String Handling and I/O Functions

263

Header file for

using gets()

function

Condition will be true as

long as the null character is

not retrieved

Each character in the array will

be compared with the constants

for matching

The output shows the entire string that we input. See the difference between gets()
and cin.

Though we are not using the concept of subscripted variable for the input and
output of strings, any element in the array can be accessed by specifying its subscript
along with the array name. We can access the first character of the string by
my_name[0], fifth character by my_name[4] and so on. We can even access the
null character ('\0') by its subscript. The following program illustrates this idea.

Program 9.2: To input a string and count the vowels in a string

#include <iostream>

#include <cstdio>

using namespace std;

int main()

{

 char str[20];

 int vow=0;

 cout<<"Enter a string: ";

 gets(str);

 for(int i=0; str[i]!='\0'; i++)

switch(str[i])

 {

case 'a':

case 'e':

case 'i':

case 'o':

case 'u': vow++;

}

 cout<<"No. of vowels in the string "<<str<<" is "<<vow;

 return 0;

}

If we run Program 9.2 by inputting the string “hello guys”, the following output
can be seen:

Enter a string: hello guys

No. of vowels in the string hello guys is 3

Now, let us analyse the program and see how it works to give this output.

l In the beginning, the gets() function is used and so we can input the string
"hello guys".

l The body of the for loop will be executed as long as the element in the array,
referenced by the subscript i, is not the null character ('\0'). That is, the
body of the loop will be executed till the null character is referenced.

264

l The body of the loop contains only a switch statement. Note that, no statements

are given against the first four cases of the switch. In the last case, the variable

vow is incremented by 1. You may think that this is required for all the cases.

Yes, you are right. But you should use the break statement for each case to

exit the switch after a match. In this program the action for all the cases are

the same and that is why we use this style of code.

l While the for loop iterates, the characters will be retrieved one by one for

matching against the constants attached to the cases. Whenever a match is found,

the variable vow is incremented by 1.

l As per the input string, matches occur when the value of i becomes 1, 4 and 7.

Thus, the variable vow is incremented by 1 three times and we get the correct

output.

We have seen how gets() function facilitates input of strings. Just like the other

side of a coin, C++ gives a console function named puts() to output string data.

The function puts() is a console output function used to display a string data on

the standard output device (monitor). Its syntax is:

puts(string_data);

The string constant or variable (character array name) to be displayed should be
provided to this function. Observe the following C++ code fragment:

char str[10] = "friends";

puts("hello");

puts(str);

The output of the above code will be as follows:

hello

friends

Note that the string "friends" in the character array str[10] is displayed in a

new line. Try this code using cout<<“hello”; and cout<<str; instead of the

puts() functions and see the difference. The output will be in the same line without

a space in between them in the case of cout statement.

Predict the output, if the input is “HELLO GUYS” in Program 9.2.

Execute the program with this input and check whether you get

correct output. Find out the reason for difference in output. Modify

the program to get the correct output for any given string.Let us do

9. String Handling and I/O Functions

265

9.4 Console functions for character I/O

We have discussed functions for input/output operations on strings. C++ also
provides some functions for performing input/ouput operations on characters.
These functions require the inclusion of header file cstdio (stdio.h in Turbo
C++ IDE) in the program.

getchar()

This function returns the character that is input through the keyboard. The character
can be stored in a variable as shown in the example given below:

char ch = getchar();

We have seen puts() function and its advantage in string output. Let us have a
look at a function used to output character data.

putchar()

This function displays the character given as the argument on the standard output
unit (monitor). The argument may be a character constant or a variable. If an integer
value is given as the argument, it will be considered as an ASCII value and the
corresponding character will be displayed. The following code segment illustrates
the use of putchar() function.

char ch = 'B'; //assigns 'B' to the variable ch

putchar(ch); //displays 'B' on the screen

putchar('c'); //displays 'c' on the screen

putchar(97); //displays 'a' on the screen

Program 9.3 illustrates the working of these functions. This program allows inputting
a string and a character to be searched. It displays the number of occurrences of a
character in the string.

Program 9.3: To search for a character in a string using console functions

#include <iostream>

#include <cstdio>

using namespace std;

int main()

{

char str[20], ch;

int i, num=0;

puts("Enter a string:"); //To print '\n' after the string

gets(str);//To accept a string with white spaces

266

1. Which character is used to delimit the string in memory?

2. Write the statement to declare a variable for storing "Save Earth".

3. Name the header file required for using console I/O functions.

4. How many bytes are required to store the string "Be Positive"?

5. How does puts("hello"); differ from cout<<"hello";?

Check yourself

cout<<"Enter the character to be searched: ";

ch=getchar(); //To input the character to be searched

/* A loop to search for the character and count its

occurrences in the string. Search will be

terminated when a null character is found */

for(i=0; str[i]!='\0'; i++)

if (str[i]==ch)

num++;

cout<<"The string \'"<<str<<"\' uses the character \'";

putchar(ch);

cout<<"\' ")<<num<<" times";

return 0;

}

Program 9.3 uses all the console functions we have discussed. The following is a
sample output of this program:

Enter a string:

I have a Dream

Enter the character to be searched: a

The string 'I have a Dream' uses the character 'a' 3 times

9.5 Stream functions for I/O operations

C++ provides another facility to perform input/output operations on character
and strings. It is in the form of functions that are available in the header file iostream.
These functions are generally called stream functions since they allow a stream of
bytes (data) to flow between memory and objects. Devices like the keyboard and
the monitor are referenced as objects in C++. Let us discuss some of these functions.

A. Input functions

These functions allow the input of character and string data. The input functions
such as get() and getline() allow a stream of bytes to flow from input object
into the memory. The object cin is used to refer to keyboard and hence whenever

9. String Handling and I/O Functions

267

we input data using keyboard, these functions are called or invoked using this object
as cin.get() and cin.getline(). Note that a period symbol (.), called dot
operator is used between the object cin and the function.

i. get()

It can accept a single character or multiple characters (string) through the keyboard.
To accept a string, an array name and size are to be given as arguments. Following
code segment illustrates the usage of this function.

char ch, str[10];

ch=cin.get(ch); //accepts a character and stores in ch
cin.get(ch); //equivalent to the above statement

cin.get(str,10); //accepts a string of maximum 10 characters

ii. getline()

It accepts a string through the keyboard. The delimiter will be Enter key, the number
of characters or a specified character. This function uses two syntaxes as shown in
the code segment given below.

char ch, str[10];

int len;

cin.getline(str,len); // With 2 arguments

cin.getline(str,len,ch); // With 3 arguments

In the first usage, getline() function has two arguments - a character array (here
it is, str) and an integer (len) that represents maximum number of characters that
can be stored. In the second usage, a delimiting character (content of ch) can also
be given along with the number of characters. While inputting the string, only
(len–1) characters, or characters upto the specified delimiting character, whichever
occurs first will be stored in the array.

B. Output functions

Output functions like put() and write() allow a stream of bytes to flow from
memory into an output object. The object cout is used with these functions since
we use the monitor for the output.

i. put()

It is used to display a character constant or the content of a character variable given
as argument.

char ch='c';

cout.put(ch); //character 'c' is displayed

cout.put('B'); //character 'B' is printed

cout.put(65); //character 'A' is printed

268

ii. write()

This function displays the string contained in the argument. For illustration see the
example given below.

char str[10]="hello";

cout.write(str,10);

The above code segment will dispaly the string hello followed by 5 white spaces,
since the second argument is 10 and the number of characters in the string is 5.

Program 9.4: To illustrate the working of stream input/output functions

#include <iostream>

#include <cstring> //To use strlen() function

using namespace std;

int main()

{

char ch, str[20];

cout<<"Enter a character: ";

cin.get(ch); //To input a character to the variable ch

cout<<"Enter a string: ";

cin.getline(str,10,'.'); //To input the string

cout<<"Entered character is:\t";

cout.put(ch); //To display the character

cout.write("\nEntered string is:",20);

cout.write(str,strlen(str));

return 0;

}

On executing Program 9.4, the following output will be obtained:

Enter a character: p

Enter a string: hello world

Entered character is: p

Entered string is:

hello wo

Let us discuss what happens when the program is executed. In the beginning, get()
function allows to input a character, say p. When the function getline() is
executed, we can input a string, say hello world. The put() function is then
executed to display the character p. Observe that the write() function displays
only hello wo in a new line. In the getline() function, we specified the integer
10 as the maximum number of characters to be stored in the array str. Usually 9
characters will be stored, since one byte is reserved for '\0' character as the string

9. String Handling and I/O Functions

269

terminator. But the output shows only 8 characters including white space. This is
because, the Enter key followed by the character input (p) for the get() function,
is stored as the '\n' character in the first location of str. That is why, the string,
hello wo is displayed in a new line.

If we run the program, by giving the input hello.world, the output will be as
follows: Observe the change in the content of str.

Enter a character: a

Enter a string: hello.world

Entered character is: a

Entered string is:

hello

The change has occurred because the getline() function accepts only the
characters that appear before the dot symbol.

Be careful while using these functions, because pressing of any

key does matter a lot in the input operation. So you may not get

the outputs as you desire. Another point you have to notice is

that, strlen() function is used in the write() function. Instead

of using this function, you can provide a number like 10 or 20. But the output

will be the string you input, followed by some ASCII characters, if the

number of characters is less than the given number. When you use strlen(),

you are actually specifying the exact number of characters in the string.

More about this function will be discussed in chapter 10. You can use this

function only if you include cstring file.

Let us do

Comparison Aspect Console Functions Stream Functions

Header file required

Usage format

Device reference

Examples

..............................

Mention the function name
with required data or variable
within parentheses

Use object name followed by
dot operator and function name
with required data or variable.

Keyboard or monitor is not
mentioned

..............................

..............................

The following table compares the stream functions. But it is not

complete. Fill up the table and check whether your entries are correct

by comparing with that of your friends.

Note the dot
character (.)

270

1. Write a program to input a string and find the number of uppercase letters,

lowercase letters, digits, special characters and white spaces.

2. Write a program to count the number of words in a sentence.

3. Write a program to input a string and replace all lowercase vowels by the

corresponding uppercase letters.

4. Write a program to input a string and display its reversed string using console

I/O functions only. For example, if the input is "AND", the output should be

"DNA".

Lab activity

After the completion of this chapter the learner will be able to

l use character arrays for string handling.

l use various built-in functions for I/O operations on character and string data.

l compare console functions and stream functions.

Array of characters is used to handle strings in C++ programs. While
allocating memory for string, a null character ('\0') is placed as the delimiter.
Different console functions are available to perform input/output operations
on strings. These functions are available in the header file cstdio. The header
file iostream provides some stream function for the input and output of
strings.

Let us sum up

Learning outcomes

1. Name the stream function to input a character data.

2. Write a C++ statement to display the string "Smoking is injurious to

health" using write() function.

3. Name the header file required for using stream I/O functions.

4. Write down the syntax of getline() function.

Check yourself

9. String Handling and I/O Functions

271

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

Sample questions

Very short answer type

1. What will the output of the statement: putchar(97); be?

2. Distinguish between console functions and stream functions.

3. Write a C++ statement to input the string “Computer” using get() function.

4. Write down the output of the following code segment:

puts(“hello”);

puts(“friends”);

Short answer type

1. Predict the output of the following code segment:

char str[] = “Program”;

for (int i=0; str[i] != ‘\0’; ++i)

{

putchar(str[i]);

putchar(‘–’);

}

5. Write a program to input a word (say COMPUTER) and create a triangle as
follows:

C
C O
C O M
C O M P
C O M P U
C O M P U T
C O M P U T E
C O M P U T E R

6. Write a program to input a line of text and display the first characters of each
word. Use only console I/O functions. For example, if the input is "Save Water,
Save Nature", the output should be "SWSN"

7. Write a program to check whether a string is palindrome or not. (A string is
said to be plaindrome if it is the same as the string constituted by reversing the
characters of the original string. eg. "MALAYALAM")

272

2. Identify the errors in the following program and give reason for each.

#include<iostream>

using namespace std;

int main()

{

char ch, str[10];

write(“Enter a character”);

ch=getchar();

puts(“Enter a string”);

cin.getline(str);

cout<< “The data entered are “ <<ch;

putchar(str);

}

3. Observe the following functions. If the statement is valid, explain what happens
when they are executed. If invalid, state reasons for it. (Assume that the variables

are valid)

(a) getchar(ch); (b) gets(str[5]);

(c) putchar(“hello”); (d) cin.getline(name, 20, ‘,’);

 (e) cout.write(“hello world”, 10);

4. Read the following statements:

char name[20];

cin>>name;

cout<<name;

What will be the output if you input the string “Sachin Tendulkar”? Justify
your answer. Modify the code to get the entered string as the output.

Long answer type

1. Explain the console I/O functions with examples.

2. Briefly describe the stream I/O functions with examples.

