
W
e started writing C++ programs in
Class XI for solving problems.
Almost all problems are related to

the processing of different types of data. Last
year we came across only elementary data items
such as integers, fractional numbers, characters
and strings. We used variables to refer to these
data and the variables are declared using basic
data types of C++. We know that all data is
not of fundamental (basic) types; rather many
of them may be composed of elementary data
items. No programming language can provide
data types for all kinds of data. So
programming languages provide facility to
define new data types, as desired by the users.
In this chapter, we will discuss such a user-
defined data type named structure. This
chapter also discusses a new kind of variable
known as pointer. The concept of pointers is a
typical feature of languages like C, C++. It
helps to access memory locations by specifying
the memory addresses directly, which makes
execution faster. A good understanding of this
concept will help us to design data structure
applications and system level programs.

Last year you might have used GNU Compiler
Collection (GCC) with Geany IDE or Turbo
C++ IDE for developing C++ programs.

1 Structures and Pointers

After the completion of this chapter, the

learner

• identifies the need of user-defined

data types and uses structures to

represent grouped data.

• creates structure data types and

accesses elements to refer to the

data items.

• uses nested structures to represent

data consisting of elementary data

items and grouped data items.

• develops C++ programs using

structure data types for solving real

life problems.

• explains the concept of pointer and

uses pointer with the operators &

and *.

• compares the two types of memory

allocations and uses dynamic

operators new and delete.

• illustrates the operations on

pointers and predicts the outputs.

• establishes the relationship

between pointer and array.

• uses pointers to handle strings.

• explains the concept of self

referential structures.

Significant Learning Outcomes

8

Computer Science - XII

GCC differs from Turbo C++ IDE in the structure of source code, the way of
including header files, the size of int and short, etc. In this chapter the concepts are
presented based on GCC.

1.1 Structures

Now-a-days students, employees, professionals, etc. wear identity cards issued by
institutions or organisations. Figure 1.1 shows the identity card of a student. The
first column of Table 1.1 contains some of the data printed on the card. You try to
fill up the second column with the appropriate C++ data types discussed in Class XI.

You may use short or int for admission number (12345), char array for name
(Sneha S. Raj), blood group (O +ve) and even address. Sometimes you may not be
able to identify the most appropriate data types for date of birth and address. Let
us consider the data 20/02/1997 and analyse the composition of this data. It is
composed of three data items namely day number (10), month number (02) and
year (1997). In some cases, the name of the month may be used instead of month
number. Address can also be viewed as a composition of data items such as house
number/name, place, district, state and PIN code. Even the entire details on the
identity card can be considered as a single unit of data. Such data is known as
grouped data (or aggregate data or compound data). C++ provides facility to
define new data types by which such aggregate or grouped data can be represented.
The data types defined by user to represent data of aggregate nature are generally
known as user-defined data types.

Structure is a user-defined data type of C++ to represent a collection of logically
related data items, which may be of different types, under a common name. We
learnt array in Class XI, to refer to a collection of data of the same type. But structure

Fig.1.1: ID card of a student

Table 1.1: Data and C++ data types

Data C++

data type

12345

Sneha S. Raj

20/02/1997

O+ve

Snehanilayam,

Gandhi Nagar,

Chemmanavattom,

Pin 685 531

1. Structures and Pointers

9

can represent a group of different types of data under a common name. Let us
discuss how a structure is defined in C++ and elements are referenced.

1.1.1 Structure definition

While solving problems, the data to be processed may be of grouped type as
mentioned above. We have to define a suitable structure to represent such grouped
data. For that, first we have to identify the elementary data items that constitute the
grouped data. Then we have to adopt the following syntax to define the structure.

struct structure_tag

{

data_type variable1;

data_type variable2;

...................;

...................;

data_type variableN;

};

In the above syntax, struct is the keyword to define a structure, structure_tag
(or structure_name) is an identifier and variable1, variable2, …,
variableN are identifiers to represent the data items constituting the grouped
data. The identifier used as the structure tag or structure name is the new user-
defined data type. It has a size like any other data types and it can be used to declare
variables. This data type can also be used to specify the arguments of functions and
as the return type of functions. The variables specified within the pair of braces are
known as elements of the structure. The data types preceded by these elements
may be basic data types or user-defined data types. These data types determine the
size of the structure.

Now let us define a structure to represent dates of the format 20/02/1997 (as seen
in the ID card). We can see that this format of date is constituted by three integers
which can be represented by int data type of C++. The following is the structure
definition for this format of date:

struct date

{

int dd;

int mm;

int yy;

};

10

Computer Science - XII

Here, date is the structure tag (structure name), and dd, mm and yy are the elements
of the structure date, all of them are of int type. If we want to specify the month
as a string (like January instead of 1), the definition can be modified as:

struct strdate

{

int day;

char month[10]; // name of month is a string

int year;

};

While writing programs for solving problems, some of the data involved may be
logically related in one way or the other. In such cases, the concept of structure data
type can be utilised effectively to combine the data under a common name to
represent data compactly. For example, the student details such as admission number,
name, group, fee, etc. are logically related and hence a structure can be defined as
follows:

struct student

{

int adm_no;

char name[20];

char group[10];

float fee;

};

We have discussed the way of defining a structure type data. Can we now store data
in it? No, it is simply a data type definition. Using this data type we should declare
a variable to store data.

1.1.2 Variable declaration and memory allocation

As in the case of basic data items, a variable is required to refer to a group of data.
Once we have defined a structure data type, variable is declared using the following
syntax:

struct structure_tag var1, var2, ..., varN;

OR

structure_tag var1, var2, ..., varN;

Now, try to define separate structures yourself to represent address

and blood group. Blood group consists of group name and rh value.

We know that the details of an employee may consist of employee
code, name, gender, designation and salary. Define a suitable structure
to represent these details.

Let us do

1. Structures and Pointers

11

In the syntax, structure_tag is the name of the structure and var1, var2, ...,
varN are the structure variables. Let us declare variables to store some dates using
the structure date and fulldate.

date dob, today; OR struct date dob, today;

strdate adm_date, join_date;

We know that variable declaration statement causes memory allocation as per the
size of the data type. What will be the size of a structure data type? Since it is user-
defined, the size depends upon the definition of the structure. The definition of
date shows that its variables require 12 bytes each because it contains three int
type elements (size of int in GCC is 4 bytes). The memory allocation for the
variable join_date of strdate type is shown in Figure 1.2.

The variable join_date consists of three elements day, month and year. These
elements require 4 bytes, 10 bytes and 4 bytes, respectively and hence the memory
space for join_date is 18 bytes.

The size of int type in GCC is 4 bytes and in Turbo IDE, it is 2 bytes. In

Figure 1.2, the elements day and year are provided with 4 bytes of memory

since we follow GCC. Since this much memory is not required for storing

values in these elements, it is better to replace int with short.

Now you find the size of the structure student defined earlier.

Also write the C++ statement to declare a variable to refer to the
details of a student and draw the layout of memory allocated to this
variable.Let us do

A structure variable can be declared along with the definition also, as shown below:

struct complex

{

short real;

short imaginary;

}c1, c2;

This structure, named complex can represent complex numbers. The identifiers
c1 and c2 are two structure variables, each of which can be used to refer to a

Fig. 1.2: Memory allocation for a structure variable

join_date

12

Computer Science - XII

complex number. If we declare structure variables along with the definition, structure
tag (or structure name) can be avoided. The following statement declares structure
variables along with the definition.

struct

{

int a, b, c;

}eqn_1, eqn_2;

There is a limitation in this type of definition cum declaration. If we want to declare
variables, to define functions, or to specify arguments using this structure later in
the program, it is not possible since there is no tag to refer. The above structure
also shows that if the elements (or members) of the structure are of the same type,
they can be specified in a single statement.

Variable initialisation

During the declaration of variables, they can be assigned with some values. This is
true in the case of structure variables also. When we declare a structure variable, it
can be initialised as follows:

structure_tag variable={value1, value2,..., valueN};

For example, the details of a student can be stored in a variable during its declaration
itself as shown below:

student s={3452, "Vaishakh", "Science", 270.00};

The values will be assigned to the elements of structure variable s in the order of
their position in the definition. So, care should be given to the order of appearance
of the values. The above statement allocates 38 bytes of memory space for variable
s, and assigns the values 3452, "Vaishakh", "Science" and 270.00 to the elements
adm_no, name, group and fee of s, respectively.

If we do not provide values for all the elements, the given values will be assigned to
the elements on First Come First Served (FCFS) basis. The remaining elements will
be assigned with 0 (zero) or '\0' (null character) depending on numeric or string.

A structure variable can be assigned with the values of another structure variable.
But both of them should be of the same structure type. The following is a valid
assignment:

student st = s;

This statement initialises the variable st with the values available in s. Figure 1.3
shows this assignment:

1. Structures and Pointers

13

1.1.3 Accessing elements of structure

We know that array is a collection of elements and these elements are accessed
using the subscripts. Structure is also a collection of elements and C++ allows the
accessibility to the elements individually. The period symbol (.) is provided as the
operator for this purpose and it is named dot operator. The dot operator (.)
connects a structure variable and its element using the following syntax:

structure_variable.element_name

In programs, the operations on the structure data can be expressed only by referring
the elements of the structure. The following are some examples for accessing the
elements:

today.dd = 10;

strcpy(adm_date.month, "June");

cin >> s1.adm_no;

cout << c1.real + c2.real;

But the expression c1+c2 is not possible, since the operator + can be used with
numeric data types only.

While defining a structure, the elements specified in it cannot be

assigned with initial values. Though the elements are specified using

the syntax of variable declaration, memory is not allocated for the

structure definition statement. Hence, values cannot be assigned to them.

The structure definition can be considered as the blue print of a house. It shows the

number of rooms, each with a specific name and size. But nothing can be stored in

these rooms. The total space of the building will be the sum of the spaces of all rooms

in the house. Any number of houses can be constructed based on this plan. All of them

will be the same in terms of number of rooms and space, but each house will be given

different name. Structure definition is the blue print and structure variables are the

realisation of the blue print (similar to the construction of houses based on the blue

print). Each variable can store data in its elements (similar to the placing of furniture,

house-hold items and residents in rooms).

Fig. 1.3: Structure assignment

s

14

Computer Science - XII

Let us discuss an interesting fact about assignment operation on structure variables.
Two structures are defined as follows:

struct test_1

{

int a;

float b;

}t1={3, 2.5};

The elements of both the structures are the same in number, name and type. The
structure variable t1 of type test_1 is initialised with 3 and 2.5 for its a and b.
But the assignment statement: t2=t1; is invalid, because t1 and t2 are of different
types, i.e., test_1 and test_2, respectively. But if we want to copy the values of
t1 into t2, the following method can be adopted:

t2.a = t1.a; t2.b = t1.b;

It is possible because we are assigning an int type data into another int type
variable.

Now let us write a program to implement the concepts discussed so far. We define
a structure student to represent register number, name and scores awarded in
continuous evaluation (CE), practical evaluation (PE) and term-end evaluation (TE).
The details are input and the total score as part of Continuous and Comprehensive
Evaluation (CCE) is displayed.

Program 1.1: To find the total score of a student

#include <iostream>

#include <cstdio> //To use gets() function

using namespace std;

struct student //structure definition begins

{

int reg_no; //Register number may exceed 32767, so int

char name[20];

short ce;//int takes 4 bytes, but ce score is a small number

short pe;

short te;

}; //end of structure definition

int main()

{

student s; //structure variable

int tot_score;

cout<<"Enter register number: ";

cin>>s.reg_no;

struct test_2

{

int a;

float b;

}t2;

1. Structures and Pointers

15

fflush(stdin); //To clear the keyboard buffer

cout<<"Enter name: ";

gets(s.name);

cout<<"Enter scores in CE, PE and TE: ";

cin>>s.ce>>s.pe>>s.te;

tot_score=s.ce+s.pe+s.te;

cout<<"\nRegister Number: "<<s.reg_no;

cout<<"\nName of Student: "<<s.name;

cout<<"\nCE Score: "<<s.ce<<"\tPE Score: "<<s.pe

 <<"\tTE Score: "<<s.te;

cout<<"\nTotal Score : "<<tot_score;

return 0;

}

A sample output window of Program 1.1 is given below:

Output window:

Enter register number: 23545

Enter name: Deepika Vijay

Enter scores in CE, PE and TE: 19 38 54

Register Number: 23545

Name of Student: Deepika Vijay

CE Score: 19 PE Score: 38 TE Score: 54

Total Score : 111

In Program 1.1, the structure is defined outside main() function. It may be defined
inside main() also. The position of the definition determines the scope and life of
the structure. Recollect the concept of local and global scope of variables and
functions that we discussed in Chapter 10 of Class XI. If the definition is inside the
main(), the structure can be used to declare variables within the main() function
only. On the other hand, if the definition has a global scope, it allows declaration of
structure variables in any function in the program.

Program 1.1 uses fflush() function before the gets() function. It is

required in programs where an input of string facilitated by gets()

function is followed by any other input. When we press <Enter> key as

the delimiter for the former input, the ‘\n’ character corresponding to

the <Enter> key available in the keyboard buffer will be taken as the input for the

string variable. This character will be considered as the delimiter for the string variable

and the program control goes to the next statement in the program. In effect, we will

not be able to input the actual string. So, we used fflush()function before inputting

the name.

16

Computer Science - XII

In Program 1.1, only one structure variable is used and hence the data of only one
student can be referenced by the program at a time. If we have to deal with the
details of a group of students, we will use an array of structures. So, let us write a
program to illustrate the concept of array of structures. Program 1.2 accepts the
details of a group of salesmen, each of which includes salesman code, name and
amount of sales in 12 months. The program displays the entered details along with
the average sales of all the salesmen. We can also see an array of floating point
numbers as one of the elements of the structure.

Program 1.2: To find the average sales by salesmen

#include <iostream>

#include <cstdio>

#include <iomanip> //To use setw() function

using namespace std;

struct sales_data

{

int code;

char name[15];

float amt[12]; //To store the amount of sales in 12 months

float avg;

};

int main()

{

sales_data s[20]; //array of structure

short n,i,j; //short is to minimise the amount of memory

float sum;

cout<<"Enter the number of salesmen: ";

cin>>n;

for(i=0; i<n; i++)

{

cout<<"Enter details of Salesman "<<i+1;

cout<<"\nSalesman Code: ";

cin>>s[i].code;

fflush(stdin);

cout<<"Name: ";

gets(s[i].name);

cout<<"Amount of sales in 12 months: ";

for(sum=0,j=0; j<12; j++)

{

cin>>s[i].amt[j];

sum=sum+s[i].amt[j];

}

1. Structures and Pointers

17

s[i].avg=sum/12;

}

cout<<"\t\tDetails of Sales\n";

cout<<"Code\t\tName\t\tAverage Sales\n";

for(i=0;i<n;i++)

{

cout<<setw(4)<<s[i].code<<setw(15)<<s[i].name;

for (j=0;j<12;j++)

cout<<setw(4)<<s[i].amt[j];

cout<<s[i].avg<<'\n';

}

return 0;

}

You may try out this program in the lab and see the output. In program 1.2, we
used a floating point array as one of the elements of the structure. It uses array of
structures for handling the details of different salesmen. Note that the variables n,
i and j are declared using short. It allocates only 2 bytes for each of these
variables. If int would have been used, 4 bytes would be used.

1.1.4 Nested structure

An element of a structure may itself be another structure. Such a structure is known
as nested structure. The concept of nesting enables the building of powerful data
structures. If we want to include date of admission as an element in the structure
student, any of the definitions given in Table 1.2 can cater to the need.

Definition A Definition B

struct date struct student

{ {

short day; int adm_no;

short month; char name[20];

short year; struct date

}; {

struct student short day;

{ short month;

int adm_no; short year;

char name[20]; } dt_adm;

date dt_adm; float fee;

float fee; };

};

Table 1.2: Two styles of nesting

18

Computer Science - XII

Definition A of Table 1.2 contains the two structures defined separately. The second
structure, student, contains structure variable dt_adm of date type as an element.
Here we have to make sure that the inner structure is defined before making it
nested. But in definition B we can see that structure date is defined inside the
structure student. If this style is followed, the scope of date is only within student
structure and hence a variable of type date cannot be declared outside student.
Since the variable declaration of the inner structure is essential, its tag may be avoided
in the definition. The following statements illustrate how a nested structure variable
is initialised and the elements are accessed:

student s = {4325, "Vishal", {10, 11, 1997}, 575};

cout<<s.adm_no<<s.name;

cout<<s.dt_adm.day<<"/"<<s.dt_adm.month<<"/"<<s.dt_adm.year;

Define a structure employee with the details employee code, name,
date of joining, designation and basic pay.
Draw the layout of memory location allocated to a variable of
employee type and find its size.Let us do

Note that the format for accessing the inner structure element is:

outer_structure_varaiable.inner_structure_variable.element

Array Vs Structure

We discussed arrays and structures as data types to refer to a collection of data
under a common name. But they differ in some aspects. Table 1.3 shows a comparison
between these two data types.

Table 1.3: Comparison between arrays and structures

Arrays

• It is a derived data type.

• A collection of same type of data.

• Elements of an array are referenced

using the corresponding subscripts.

• When an element of an array

becomes another array, multi-

dimensional array is formed.

• Array of structures is possible.

Structures

• It is a user-defined data type

• A collection of different types of data.

• Elements of structure are referenced

using dot operator (.)

• When an element of a structure

becomes another structure, nested

structure is formed.

• Structure can contain arrays as

elements

1. Structures and Pointers

19

Know your progress

1. What is structure?

2. Structure combines different types of data under a single unit. State
whether this is true or false.

3. Which of the following is true for accessing an element of a
structure?

a. struct.element
b. structure_tag.element
c. structure_variable.element
d. structure_tag.structure_variable

4. What is nested structure? Write an example.

5. As subscript is for array, ________ is associated with structure.

1.2 Pointers

Suppose we have to prepare an assignment paper on 'Advances in Computing'. We
may need suitable books for collecting the material. Obviously we may search for
the books in the library. We may not be able to locate the book in the library. The
librarian or our Computer Science teacher can help us to access the book. Let us
think of the role of the librarian or the teacher. He/she is always a reference. He/
she can provide us with the actual data (book) that is stored somewhere in the
library. Figure 1.4 illustrates this example.

Pointer is something like the librarian or
teacher in the above example. It is a kind
of reference. Consider the following C++
statement:

int num=25;

We know that it is a variable initialisation
statement, in which num is a variable that is
assigned with the value 25. Naturally, this
statement causes memory allocation as
shown in Figure 1.5.

In the figure, we can see that a variable has three
attributes - its name, address and data type. Here,
the name of the variable is num and the content 25
shows the data type. What about the address? Is it
1001, 1002, 1003 or 1004? It is 1001. Variable num

Fig. 1.4: Example for reference

Fig.1.5: Memory allocation

20

Computer Science - XII

being int type, 4 bytes (in GCC) are allocated. We know that each cell in RAM is

of one byte size and each cell is identified by its unique address. But, when more

than one cell constitute a single storage location (known as memory word), the address

of the first cell will be the address of that storage location. That is how 1001 becomes

the address of num. In class XI, we learnt that a variable is associated with two

values: L-value and R-value, where L-value is the address of the variable and R-
value is its content. Figure 1.5 shows that L-value of num is 1001 and R-value is 25.

Suppose we want to store the L-value (address) of a variable in another memory

location. A variable is needed for this and it is known as pointer variable. Thus we

can define pointer as a variable that can hold the address of a memory location.

Pointer is primitive since it contains memory address which is atomic in nature. So

we will say that pointer is a variable that points to a memory location (or data).

Harold Lawson (born 1937), a software engineer, computer architect

and systems engineer is credited with the 1964 invention of the pointer.

In 2000, Lawson was presented the Computer Pioneer Award by the

IEEE for his invention.

As you know, computers use their memory for

storing the instructions of a program, as well as

the values of the variables that are associated

with it. The memory is a sequential collection of

'storage cells' as shown in Figure 1.6. Each cell, commonly known

as a byte, has a number called address associated with it.

Typically, the addresses are numbered consecutively, starting

from 0 (zero). The address of the last cell depends on the

memory size. A computer memory having 64 K (64 x 1024 =

65536 Bytes) memory will have its last address as 65,535.

Whenever we declare a variable in a program, a location is

allocated somewhere in the memory to hold the R-value of the

variable. Since every byte has a unique number as its address,

this location will have its own address. Nowadays, the size of

RAM is in terms of GBs and the address of memory location is expressed in hexadecimal

number. It is because hexadecimal system can express larger values with lesser number

of digits compared to decimal system.

Fig.1.6: Memory
organisation

1. Structures and Pointers

21

1.2.1 Declaration of pointer variable

Pointer is a derived data type and hence a variable of pointer type is to be declared
prior to its use in the program. The following syntax is used to declare pointer
variable:

data_type * variable;

The data_type can be fundamental or user-defined and variable is an identifier.
Note that an asterisk (*) is used in between the data type and the variable. The
following are examples of pointer declaration:

int *ptr1;

float *ptr2;

struct student *ptr3;

As usual memory will be allocated for these pointers. Do you think that the amount
of memory for these variables is dependent on the data types used? We know that
memory addresses are unsigned integer numbers. But it does not mean that pointers
are always declared using unsigned int. Then, what is the criterion for determining
the data type for a pointer? The data type of a pointer should be the same as that of
the data pointed to by it. In the above examples, ptr1 can contain the address of
an integer location, ptr2 can point to a location containing floating point number,
and ptr3 can hold the address of location whose R-value is student type data.
So what will be the size of a pointer variable? The memory space for a pointer
depends upon the addressing scheme of the computer. Usually, the size of a pointer
in C++ is 2 to 4 bytes. As far as a programmer is concerned, there is no need to
bother about the size of pointer while solving problems.

1.2.2 The operators & and *

Once a pointer is declared, memory address of a location of the same data type
can be stored in it. When a variable is referenced in a C++ statement, actually its
R-value is referred to. How can we retrieve its address (L-value)? C++ provides an
operator named address of operator (&), to get the address of a variable. If num
is an integer variable, its address can be stored in pointer ptr1 by the following
statement:

ptr1 = #

The statement, on execution, establishes
a link between two memory locations
as shown in Figure 1.7.

We have discussed that pointer is a kind
of reference. Since a pointer references Fig.1.7: Pointer and a location pointed to by it

22

Computer Science - XII

a data stored somewhere in the memory, by dereferencing the pointer we get the
data. C++ provides this dereferencing facility by an operator named indirection
or dereference operator (*). The following statement retrieves the value pointed
to by the pointer ptr1 and displays on the screen.

cout << *ptr1;

It is clear that this statement is equivalent to the statement: cout << num;

Since the operator * retrieves the value at the location pointed to by the pointer,
the * operator is also known as value at operator.

Note that the operators address of (&) and indirection (*) are unary operators. The
& operator can be used with any kind of variable since every variable is associated
with a memory address. But, the * operator can be used only with pointers.

Considering the variables used in Figure 1.7, the following statements illustrate the
operations performed by these operators:

cout<< # // 1001 (address of num) will be the output

cout<< ptr1; // 1001 (content of ptr1) will be the output

cout<< num; // 25 (content of num) will be the output

cout<< *ptr1;/* 25 (value in the location pointed to by

 ptr1) will be the output */

cout<< &ptr1;// 1500 (address of ptr1) will be the output

cout<< *num; // Error!! num is not a pointer

The last statement is invalid. An error will be reported during compilation, because
num is not a pointer and the content 25 is not a memory address. The indirection
operator (*) should be used only with pointers.

1.3 Methods of memory allocation

We know that variable declaration statements initiate memory allocation. The
required memory is allocated when the program is loaded in RAM. The execution
of the program begins only after this memory allocation. The amount of memory
allocated depends upon the number and data type of variables used in the program.
This amount is static, i.e., it will not increase or decrease during the program run.
The memory allocation that takes place before the execution of the program is
known as static memory allocation. It is due to the variable declaration statements
in the program. There is another kind of memory allocation, called dynamic
memory allocation. In this case, memory is allocated during the execution of the
program. It is facilitated by an operator, named new. As complementary to this
operator, C++ provides another operator, named delete to de-allocate the
memory.

1. Structures and Pointers

23

1.3.1 Dynamic operators - new and delete

The operator new is a keyword in C++ and it triggers the allocation of memory
during run-time (execution). It is a unary operator and the required operand is
either a fundamental or user-defined data type. Dynamic memory allocation being
an operation, the operator new and the operand data type constitute an expression.
Naturally it returns a value and this value will be the address of a location. The size
of this location will be the same as that of the data type used as the operand. The
following syntax is used for dynamic memory allocation:

pointer_variable = new data_type;

Note that a pointer variable is used to hold the address returned by the new operator.
So, it should be declared earlier with the same data type specified after new operator.
The following are examples for dynamic memory allocation:

short * si_ptr;

float * fl_ptr;

struct complex * cx_ptr;

si_ptr = new short;

fl_ptr = new float;

cx_ptr = new complex;

The memory allocations are shown in Figure 1.8.

Fig. 1.8: Layout of dynamic memory allocation

Figure 1.8 shows that 2 bytes of location for short type data is allocated at the
address 1000 and it is stored in si_ptr. Similarly 4 bytes from the address 1010
for float type data is allocated and this address is stored in fl_ptr. Earlier we
discussed a structure named complex that consists of two short type elements.
The pointer cx_ptr holds the address 1200 that is allocated for a complex type
data of size 4 bytes (2 bytes each for short real and short imaginary).
Note that, the dynamically allocated memory locations cannot be referred to by
ordinary variables. Rather these are accessed using indirection (dereferencing)
operator only as shown in the following examples:

*si_ptr = 247;

cin >> *fl_ptr;

24

Computer Science - XII

We have a structure pointer cx_ptr, but the data pointed to by this pointer cannot
be accessed in this format. We will discuss the accessing method later in this chapter.

As in the case of variable initialisation during static memory allocation, dynamically
allocated memory locations can also be initialised using the following syntax:

pointer_variable = new data_type(value);

The following examples show initialisation along with dynamic memory allocation:

si_ptr = new short(0);

fl_ptr = new float(3.14);

In the case of cx_ptr, this kind of initialisation is not possible.

Once memory is allocated dynamically using new operator, it should be de-allocated
or released before exiting the program. C++ provides delete operator for this
purpose. In the case of static memory allocation, operating system itself allocates
and releases memory depending on the scope and life of the variables. But in the
case of dynamic memory allocation, the program should have an explicit statement
to release (or free) the memory. For that, delete operator is used with the following
syntax:

delete pointer_variable;

The following are valid examples:

delete si_ptr;

delete fl_ptr, cx_ptr;

1.3.2 Memory leak

If the memory allocated using new operator is not freed using delete, that memory
is said to be an orphaned memory block - a block of memory that is left unused,
but not released for further allocation. This memory block is allocated on each
execution of the program and the size of the orphaned block is increased. Thus a
part of the memory seems to disappear on every run of the program, and eventually
the amount of memory consumed has an unfavorable effect. This situation is known
as memory leak.

The following are the reasons for memory leak:

• Forgetting to delete the memory that has been allocated dynamically (using
new).

• Failing to execute the delete statement due to poor logic of the program
code.

• Assigning the address returned by new operator to a pointer that was already
pointing to an allocated object.

1. Structures and Pointers

25

Remedy for memory leak is to ensure that the memory allocated through new is
properly de-allocated through delete. Memory leak takes place only in the case
of dynamic memory allocation. But in case of static memory allocation, the
Operating System takes the responsibility of allocation and deallocation without
user's instruction. So there is no chance of memory leak in static memory allocation

Know your progress

1. What is pointer?

2. What is the criterion for determining the data type of a pointer?

3. If mks is an integer variable, write C++ statements to store its
address in a pointer.

4. If ptr is an integer pointer, write C++ statement to allocate
memory for an integer number and initialise it with 12.

5. Consider the statements: int *p, a=5; p=&a; cout<<*p+a;

What is the output?

1.4 Operations on pointers

We have discussed that indirection (*) and address of (&) operators can be used
with pointers. In Class XI, we used arithmetic, relational and logical operators. In
this section, we will have a look at the operators that can be used with pointers and
how these operations are performed.

Table 1.4: Static Vs Dynamic memory allocation

Dynamic memory allocation

new operator is required

Pointer is essential

Static memory allocation

i. Takes place before the execution of the
program.

ii.

iii.

iv. Data is referenced using variables

v. No statement is needed for de-
allocation

Now let us compare static memory allocation and dynamic memory
allocation. Table 1.4 may be used for comparison. Some of the entries
are left for you to complete using proper points.

Let us do

26

Computer Science - XII

1.4.1 Arithmetic operations on pointers

We have seen that memory address is numeric in nature. Hence some of the
arithmetic operations can be performed on pointers. Let us consider the pointers
si_ptr and fl_ptr declared in section 1.3.1 (Refer Figure 1.8). Now, observe
the following statements:

cout << si_ptr + 1;

cout << fl_ptr + 1;

What will be the output? Do you think that it will be 1001 and 1011?

Adding 1 to a pointer is not the same as adding 1 to an int or float type data.
When we add 1 to a short int pointer, the expression returns the address of the
next location of short int type. The cells with addresses 1000 and 1001 constitute
a single storage location for an integer data of short type. Hence the address of
the next addressable short integer location is 1002. So when 1 is added to a short
int type pointer, actually its size (i.e., 2) is to be added to the address contained in
the pointer variable. Similarly, to add 1 to float type pointer, its size (i.e., 4) is to
be added to the address. So the expression fl_ptr+1 returns 1014. So, it is clear
that the expression si_ptr+5 returns 1010 (1000+5×2) and fl_ptr+3 returns
1022 (1010+3×4). Similarly, subtraction operation can also be performed on
pointers.

Find the values returned by the following arithmetic expressions:
si_ptr + 10 fl_ptr + 7

si_ptr - 5 fl_ptr - 10
Let us do

Note that this kind of operation is practically wrong. Because we are trying to
access locations that are not allocated for authorised use. These locations might
have been used by some other variables. Sometimes these locations might not have
been accessible due to the violation of access rights.

No other arithmetic operations are performed on pointers. So we can conclude
that pointers are only incremented or decremented. The following statements
illustrate various operations on pointers:

int *ptr1, *ptr2; // Declaration of two integer pointers

ptr1 = new int(5); /* Dynamic memory allocation (let the

address be 1000)and initialisation with 5*/

ptr2 = ptr1 + 1; /* ptr2 will point to the very next

integer location with the address 1004 */

++ptr2; // Same as ptr2 = ptr2 + 1

1. Structures and Pointers

27

cout<< ptr1; // Displays 1000

cout<< *ptr1; // Displays 5

cout<< ptr2; // Displays 1004

cin>> *ptr2; /* Reads an integer (say 12) and

stores it in location 1004 */

cout<< *ptr1 + 1; // Displays 6 (5 + 1)

cout<< *(ptr1 + 2);// Displays 12, the value at 1004

ptr1--; // Same as ptr1 = ptr1 - 1

Let us write a program to demonstrate the operations on pointers. Program 1.3
gives the average height of a group of students.

Program 1.3: To find the average height of students

#include <iostream>

using namespace std;

int main()

{

int *ht_ptr, n, s=0;

float avg_ht;

ht_ptr = new int; //dynamic memory allocation

cout<<"Enter the number of students: ";

cin>>n;

for (int i=0; i<n; i++)

{

cout<<"Enter the height of student "<<i+1<<" - ";

cin>>*(ht_ptr+i);//to get the address of the next location

s = s + *(ht_ptr+i);

}

avg_ht = (float)s/n;

cout<<"Average height of students in the class = "<<avg_ht;

return 0;

}

In program 1.3, an integer location is dynamically allocated and the address is stored
in the pointer ht_ptr. When the body of the loop is executed for the first time, 0
is added to this address and it does not make any change. The input data is stored
in this location. During the second execution of the loop-body, 1 is added to this
address and the next integer location is referenced for the input. This process is
continued for entering the heights of n students. Sum of these heights is calculated
along with the input and after the completion of the loop, average is calculated.

28

Computer Science - XII

Here explicit type conversion is used to get the accurate result. A sample output is
shown below:

Enter the number of students: 5

Enter the height of student 1 - 170

Enter the height of student 2 - 169

Enter the height of student 3 - 175

Enter the height of student 4 - 165

Enter the height of student 5 - 177

Average height of students in the class = 171.199997

Program 1.3 also shows that a collection of the same type of data can be handled
by utilising pointer arithmetic. Last year, we used arrays in such a situation. But the
size should be specified during the array declaration. This may cause wastage or
insufficiency of memory space. Pointer and its arithmetic overcome this drawback.

But there is a problem in this kind of memory usage. It is not sure that Program 1.3
will always run with any value of n. GCC may not give any output for the avg_ht.
Though there is no problem theoretically, unexpected results may occur during
execution. As mentioned earlier, pointer ht_ptr is initialised with the address of
only one location. The memory locations accessed using pointer arithmetic on
ht_ptr are unauthorised, since these locations are not allocated by the OS. This
may lead to unexpected termination of the program or loss of some data that
already reside in those locations. We can overcome these issues by the facility of
dynamic arrays, which we discuss in Section 1.5 of this chapter.

1.4.2 Relational operations on pointers

Among the six relational operators, only == (equality) and != (non-equality)
operators are used with pointers. Memory address is simply a unique number to
identify each memory location. If p and q are two pointers, they may contain the
address of the same integer location or different memory locations. This can be
verified with the expressions p==q or p!=q.

Know your progress

1. Dynamic memory allocation operator in C++ is ________.

2. What happens when the following statement is executed?
int *p = new int(5);

3. What is orphaned memory block?

4. If p is an integer pointer, which of the following are invalid?
a. cout<<&p; b. p=p*5; c. p>0
d. p++; e. p=1500; f. cout<<*p * 2;

1. Structures and Pointers

29

1.5 Pointer and array

We learnt that an array can contain a collection of
homogeneous type of data under a common name. This
data is stored in contiguous memory locations. Figure 1.9
shows the memory allocation of an array ar[10] of int
type with 10 numbers.

It is assumed that the array begins at location 1000 and each
location consists of 4 bytes (as per GCC). We know that any
element of this array can be referenced by specifying the
subscript along with the array name. For example, ar[0]
returns 34, ar[1] returns 12, and at last ar[9] returns 19.

Fig. 1.9: Memory
allocation for array ar

Write C++ statement to display all the 10 elements of this array.

How can we store the address of the first location of this array into
a pointer?Let us do

If ptr is an integer pointer, the address of the first location of array ar[10] can
be stored in it with the following statement:

ptr = &ar[0];

Now let us see the output of the expressions used in the following statements:

cout<<ptr; //Displays 1000, the address of ar[0]

cout<<*ptr; //Displays 34, the value of ar[0]

cout<<(ptr+1); //Displays 1004, the address of ar[1]

cout<<*(ptr+1); //Displays 12, the value of ar[1]

cout<<(ptr+9); //Displays 1036, the address of ar[9]

cout<<*(ptr+9); //Displays 19, the value of ar[9]

Can you predict the output of the statement: cout<<ar; ?

The output will be 1000, which is the address of the first location of the array. This
address is known as base address of the array. We have seen that a variable that
contains the address of a memory location is called pointer. In that sense, array-
name ar can be considered as a pointer. So the following statements are also valid:

cout<<ar; //Displays 1000, the address of ar[0]

ptr=ar; //same as ptr=&ar[0];

cout<<*ar; //Displays 34, and is same as cout<<ar[0];

cout<<(ar+1); //Displays 1004, the address of ar[1];

cout<<*(ar+1); //Displays 34, and is same as cout<<ar[1];

30

Computer Science - XII

The following C++ statement displays all the elements of this array:

for (int i=0; i<10; i++)

cout<<*(ar+i)<<'\t';

There is a difference between an ordinary pointer and an array-name. The statement
ptr++; is valid and is equivalent to ptr=ptr+1;. After the execution of this
statement ptr will point to the location of ar[1]. That is, ptr will contain the
address of ar[1]. But the statement ar++; is invalid, because array-name always
contains the base address of the array, and it cannot be changed.

Dynamic array

In C++, array helps to handle a collection of same type of data. But, if the number
of data items is not known in advance, there is a problem in declaring the array. As
we know, size of array is to be specified in the declaration statement, and it should
be an integer constant. How can we declare an array to store the percent of pass
obtained by the schools in any district in the Higher Secondary examination? Neither
float pass[n]; nor float pass[]; is valid. We have to mention an integer
constant as size of the array and it may cause insufficiency or wastage of memory
space. The district, and hence the number of schools are unknown while writing the
program. So, the program should provide the facility to allocate the required
locations as per the user's input. The solution in such a situation is dynamic array.

Dynamic array is created during run time using the dynamic memory allocation
operator new. The syntax is:

pointer = new data_type[size];

Here, the size can be a constant, a variable or an integer expression. Program 1.4
illustrates the concept of dynamic array. It can store the percent of pass secured by
the schools. The number of schools will be decided by the user only at the time of
execution of the program.

Program 1.4: To find the highest percent of pass in schools

#include <iostream>

using namespace std;

int main()

{

float *pass, max;

int i, n;

cout<<"Enter the number of schools: ";

cin>>n; //To input number of schools

pass = new float[n];//dynamic array having n elements

1. Structures and Pointers

31

for (i=0; i<n; i++)

{

cout<<"Percent of pass by school "<<i+1<<": ";

cin>>pass[i]; //Concept of subscripted variable

}

max=pass[0];

for (i=1; i<n; i++)

if (pass[i]>max) max = *(pass+i);

/* Elements are accessed using subscript and pointer

arithmetic operation */

cout<<"Highest percent is "<<max;

return 0;

}

Output:

Enter the number of schools: 5

Percent of pass by school 1: 75.6

Percent of pass by school 2: 66.5

Percent of pass by school 3: 89.3

Percent of pass by school 4: 71

Percent of pass by school 5: 70.6

Highest percent is 89.3

Program 1.4 uses dynamic array to store the data. Memory is allocated only during
execution and five locations, each with 4 bytes, are reserved for the array pass.
Elements of this array are accessed using subscript as well as pointer arithmetic
operation.

1.6 Pointer and string

In Class XI, we learnt that string data can be referenced by character array and the
array-name can be considered as string variable. In the previous section, we saw
that array-name contains the base address of the array, and hence it can be considered
as a pointer. Let us discuss how these two aspects are combined to refer to strings
using pointer. The following statements illustrate how character pointer differs from
the other pointers:

Read the following statements and write the difference between them:

int *ptr = new int(10);

int *ptr = new int[10];
Let us do

32

Computer Science - XII

char str[20]; //character array declaration

char *sp; //character pointer declaration

cin>>str; //To input a string, say "Program"

cout<<str; //Displays the string "Program"

sp=str; //Content of str is copied into the pointer sp

cout<<sp; //Displays the string "Program"

cout<<&str[0]; //Displays the string "Program"

cout<<sp+1; //Displays the string "rogram"

cout<<&str+1; //Displays the string "rogram"

/* The two statements given above display the substring

starting from 2nd character onwards */

cout<<str[0]; //Displays the character 'P'

cout<<*sp; //Displays the character 'P'

cout<<&str; //Displays the base address of the array str

cout<<&sp; //Displays the address of the pointer sp

A string contained in an array cannot be copied into another character array using
assignment operator (=) (we used strcpy() function last year). But, the assignment is
possible with character pointers. The statements sp=str; and cout<<sp; show
this fact. It proves that a character pointer can be used to store a string and this
pointer can be considered as a string variable. That is, as we use character array
name to refer to string data, character pointer can also serve the same.

Another interesting aspect is that, the statement cout<<&str[0]; also displays
the entire string, instead of the address of the first location (base address). That
means, if we access the address of a string data, we get the string itself. But str[0]
and *sp gives the first character of the string.

Advantages of character pointer

The use of character pointer for storing string offers the following advantages over
character array:

• Since there is no size specification, a string of any number of characters can be
stored. There is no wastage or insufficiency of memory space. But it should be
done with initialization. (e.g., char *str = "Program";)

• Assignment operator (=) can be used to copy strings.

• Any character in the string can be referenced using the concept of pointer
arithmetic which makes access faster.

• Array of strings can be managed with optimal use of memory space.

1. Structures and Pointers

33

Array of strings

Suppose, we want to store the names of days in a week. A character array or character
pointer can be used to store only one name at a time. Here we need to refer to a
collection of strings ("Sunday", "Monday", ..., "Saturday"). Obviously we should
use an array of character arrays (2D array of char type) or an array of character
pointers. The following statement declares an array of character pointers to handle
this case:

char *name[7];

This array can contain a maximum of 7 strings, where each string can contain any
number of characters. But we should make sure that the pointer array is initilaised.
It may be as follows:

char *week[7]={"Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday"};

Figure 1.10 shows the optimal use of memory locations. Only the shaded portion
will be allocated.

Fig. 1.10: Memory allocation for strings

Write C++ statements to sort
these names using any of the
sorting techniques we
discussed in Class XI. Since we
use character pointer, strings
can be copied using
assignment operator. Check
the correctness of your code
during your lab work.

Let us do

The following statement illustrates the accessing of these strings:

for (i=0; i<7; i++)

cout<<name[i];

An array of strings can be handled using a 2D character array as given

below:

char name[10][20];

This array can contain 10 names, each of which can have a maximum of

19 characters. One byte is reserved for null character ('\0'). Each string is referred

to by the expression name[i], where the subscript i can take values from 0 to 9. In

this case strcpy() function should be used for copying the strings into variables.

34

Computer Science - XII

Fig. 1.11: Dynamic memory allocation for employee type data

1.7 Pointer and structure

Earlier in this chapter, we discussed structure data type and its applications. This
section discusses how structures are accessed by pointers. A structure is defined to
represent the details of employees as follows:

struct employee

{

int ecode;

char ename[15];

float salary;

};

Now, observe the following declaration statement:

employee *eptr;

It is clear that eptr is a pointer that can hold the address of employee type data.
The statement:

eptr = new employee;

allocates 23 bytes of memory and its address is stored in the pointer eptr. Figure
1.11 illustrates the effect of this statement.

Know your progress

1. What is dynamic array?

2. Address of the first location of an array is known as _______.

3. If arr is an integer array, which of the following are invalid?

a. cout<<arr; b. arr++; c. cout<<*(arr+1);

d. cin>>arr; e. arr=1500; f. cout<<*arr * 2;

4. Write a declaration statement in C++ to refer to the names of 10
books using pointers.

5. Write a statement to declare a pointer and initialise it with your
name.

1. Structures and Pointers

35

We learnt that a structure is accessed in terms of its elements with the following
format:

structure_variable.element_name

Here, we do not have a structure variable to access the elements ecode, ename
and salary. So we have to use the pointer eptr. The syntax for accessing the
elements of a structure is as follows:

structure_pointer->element_name

Note that structure pointer and an element is connected using arrow operator
(->). It is constituted by a hyphen (-) followed by greater than symbol (>). The
following statements are examples for accessing the elements of the structure shown
in Figure1.11.

eptr->ecode = 657346; //Assigns an employee code

gets(eptr->ename); //inputs the name of an employee

cin>> eptr->salaray; //inputs the salary of an employee

cout<< eptr->salary * 0.12; //Displays 12% of the salary

Earlier in this chapter, in Section 1.3.1, we mentioned a pointer
cx_ptr of complex type structure. Write C++ statements to input
a complex number and display in its actual format.

Let us do

Let us modify the structure employee by adding an element as follows:

struct employee

{

int ecode;

char ename[15];

float salary;

int *ip;

};

Obviously, the element ip can contain the address of an integer location. The
following statements illustrate the use of pointer ip:

eptr->ip = new int(5); /* Dynamic allocation for integer

 and initialiastion with 5 */

cout << *(eptr->ip); // Displaying the value 5

int n = eptr->*ip+1; // Adding 1 to 5 and stores it in n

Observe that the value pointed to by ip can be referenced in two ways:
*(eptr->ip) and eptr->*ip. A structure can contain pointer of any data type
as its element. Even it may be of the same structure data type as follows:

36

Computer Science - XII

Fig. 1.12: An employee of structure type points to another employee

struct employee

{

int ecode;

char ename[15];

float salary;

employee *ep;

};

Now, the structure employee is known as self referential structure. Let us discuss
more on this type of structures and their applications.

Self referential structure

Self referential structure is a structure in which one of the elements is a pointer
to the same structure. A location of this type contains data and the address of
another location of the same type. This location can again contain data and address
of yet another location of the same structure type. It can be extended as per the
requirement. Figure 1.12 shows this concept.

An employee named "Sunil" points to the next employee whose table number is 12.
The employee at table number 12 is "Anil" and he points to the next employee
"Nisha" and so on.

Self referential structure is a powerful tool of C and C++ languages that helps to
develop dynamic data structures like linked list, tree, etc. Dynamic data structure
means a collection of data for which memory will be allocated during run-time.
The memory locations are scattered, but there will be a link from one location to
another. More about the data structure linked list will be discussed in Chapter 3.

Let us conclude

We have discussed more advanced data types in C++ in this chapter. Structure data
type is introduced to represent grouped or aggregate data under single name.
Accessing of elements with dot operator (.) is discussed. Pointer is presented as a
special type of data. Operations associated with pointers are illustrated with the
help of expressions. The concept of dynamic memory allocation and the required

The element ep is a pointer
of employee data type

1. Structures and Pointers

37

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

operators, and its advantages are discussed. The relationship between array and
pointer is illustrated, and string data are handled using pointer. A good understanding
of the concepts dealt with in this chapter will help you to attain the learning outcomes
specified in Chapter 3 and equip you for higher studies.

Let us practice

1. Define a structure to represent the details of telephone subscribers which include
name of the subscriber and telephone number. Write a menu driven program
to store the details of some subscribers with options for searching the name
for a given number, and the number for a given name.

2. Define a structure to represent the details of customers in a bank. The details
include account number, name, date of opening the account and balance
amount. Write a menu driven program to input the details of a customer and
provide options to deposit, withdraw and view the details. During deposit
and withdrawal, proper update is to be made in the balance amount. A minimum
balance of Rs. 1000/- is a must in the account.

3. Write a program to input the TE scores obtained by a group of students in
Computer Science and display them in the descending order using pointers.

4. Write a program to input a string and check whether it is palindrome or not
using character pointer.

5. Write a program to input the names of students in a class using pointers and
create a roll list in which the names are listed in alphabetical order with roll
number starting from 1.

6. Define a structure student with the details register number, name and CE marks
of six subjects. Using a structure pointer, input the details of a student and
display register number, name and total CE score.

 Let us assess

1. Compare array and structure in C++.

2. Identify the errors in the following structure definition and write the reason
for each:

struct

{

int roll, age;

float fee=1000;

};

38

Computer Science - XII

3. Read the following structure definition and answer the following questions:

struct Book

{

int book_no;

char bk_name[20];

struct

{

short dd;

short mm;

short yy;

}dt_of_purchase;

float price;

};

a. Write a C++ statement to declare a variable to refer to the details of a
book. What is the memory requirement of this variable? Justify your answer.

b. Write a C++ statement to initialise this variable with the details of your
Computer Science text book.

c. Write C++ statement(s) to display the details of the book.

d. The missing of structure tag in the inner structure does not cause any
error. State whether this is true or false. Give reason.

4. "Structure is a user-defined data type". Justify this statement with the help of
an example.

5. Read the following statements:

i. While defining a structure in C++, tag may be omitted.

ii. The data contained in a structure variable can be copied into another variable
only if both of them are declared using the same structure tag.

iii. Elements of a structure is referenced by structure_name.element

iv. A structure can contain another structure.

Now, choose the correct option from the following:

a. Statements (i) and (ii) are true b. Statements (ii) and (iv) are true

c. Statements (i), (ii) and (iv) are true d. Statements (i) and (iii) are true

6. Read the following C++ statements:

int * p, a=5;

p=&a;

a. What is the speciality of the variable p?

b. What will be the content of p after the execution of the second statement?

c. How do the expressions *p+1 and *(p+1) differ?

1. Structures and Pointers

39

7. Identify the errors in the following C++ code segment and give the reason for
each.

int *p,*q, a=5;

float b=2;

p=&a;

q=&b;

cout<<p<<*p<<*a;

if (p<q)cout<<p;

cout<<*p * a;

8. While writing a program, the concept of dynamic memory allocation is applied.
But the program does not contain a statement with delete operator and it
creates a problem. Explain the problem.

9. Read the C++ statements given below and answer the following questions:

int ar[] = {34, 12, 25, 56, 38};

int *p = ar;

a. What will be the content of p?

b. What is the output of the expression: *p + *(ar+2)?

c. The statement ar++; is invalid. Why? How does it differ from p++;?

10. Explain the working of the following code segment and predict the output:

char *str = "Tobacco Kills";

for (int i=0; str[i]!='\0'; i++)

if (i>8)

(str+i) = toupper((str+i));

cout<<str;

11. Observe the following C++ statements:

int ar[] = {14, 29, 32, 63, 30};

One of following expressions cannot be used to access the element 32. Which
is that?

a. ar[2] b. ar[*ar%3] c. *ar+2 d. *(ar+2)

12. Explain the operations performed by the operaors new and delete with the
help of examples.

13. What is meant by memory leak? What are the reasons for it? How can we
avoid such a situation?

40

Computer Science - XII

14. Compare the following two statements.

int a=5;

int *a=new int(5);

15. Read the structure definition given below and answer the following questions:

struct sample

{

int num;

char *str;

} *sptr;

a. Write C++ statements to dynamically allocate a location for sample type
data and store its address in sptr.

b. Write C++ statements to input data into the location pointed to by sptr.

c. Modify this structure into a self referential structure.

