
1

After the completion of this chapter, the

learner

• compares various programming

paradigms.

• lists the features of procedure-

oriented paradigm.

• lists the advantages of object-

oriented paradigm.

• explains the concepts of data

abstraction and encapsulation,

citing examples.

• explains inheritance and

polymorphism with the help of

real life examples.

W
e learn a programming language to
develop programs which make the
computer a more useful machine.

The bigger the program is, the more difficult
it becomes to manage it. To overcome this
difficulty there are a lot of tools like IDE,
debugger, compiler, etc. that we can use, and
approaches like structured, procedural,
modular, object oriented, etc. that we can
follow in software development.
Implementation of these tools and
approaches helps us to address a number of
issues faced in software development, like
maintainability, reusability, portability,
security, integrity, and the user-friendliness of
software products.

In the previous chapter, we learnt various
programming concepts and developed
programs in C++ language for solving
problems. Our aim has been to process the
inputs and produce the output. As the
programs developed were small and less
complex, we never thought of giving
importance to the approaches we adopted
or to the security of data used or in organising
the processing steps. But, knowingly or
unknowingly, we were following some
approach while writing programs to solve
problems. This chapter discusses the

2
Concepts of Object

Oriented Programming

Significant Learning Outcomes

42

Computer Science - XII

programming approach that we have been following so far and presents new
approaches, so that we can choose a suitable approach for program development.

2.1 Programming paradigm

A programming paradigm denotes the way in which a program is organised. If the
program is very small, there is no need to follow any organising principle. But, as it
becomes larger, some measures have to be taken for managing it and for reducing
its complexity.

While some paradigms give more importance to procedures, others give more
importance to data. Capabilities and styles of various programming languages are
defined by the programming paradigms supported by them. The various approaches
that have been tried are modular programming, top-down programming, bottom-
up programming and structured programming. Each one of these approaches were
used to reduce the complexity of programming and to create reliable and
maintainable programs.

Some programming languages are designed to follow only one paradigm, while
others support multiple paradigms. C++ is a multiple paradigm language. Using
C++, we can implement two of the most important programming paradigms, the
procedural paradigm and the object-oriented paradigm. Let us discuss each of
these in detail.

2.1.1 Procedure-Oriented Programming paradigm

Procedure-Oriented Programming specifies a series of well-structured steps and
procedures to compose a program. It contains a systematic order of statements,
functions and commands to complete a computational task or program. The
statements may be to accept input, to do arithmetic or logical operations, to display

2. Concepts of Object Oriented Programming

43

result, etc. In this approach emphasis is
on doing things. In this paradigm, when
the program becomes larger and
complex, the list of instructions is
divided and grouped into functions. A
function clearly defines the purpose, and
interface to other functions in the
program, thus reducing the complexity.
To further reduce the complexity, the
functions associated with a common
task are grouped into modules. Figure
2.1 shows a procedural paradigm in
which a large program is divided into
five separate functions, and functions associated with a common task grouped into
two modules.

C, Pascal, FORTRAN, BASIC, etc. are procedural languages. In the C++ learning
process, the organising principle we followed till now was the procedural paradigm.
Procedural programming languages are also known as top-down languages.

But, when the program gets larger and more complex, the procedure-oriented
programming approach is found to have several limitations. No matter how well
this approach is implemented, large programs become excessively complex. The
main reasons for the increasing complexity with procedural languages are:

a. Data is undervalued.

b. Adding new data element may require modifications to all/many functions.

c. Creating new data types is difficult.

d. Provides poor real world modelling.

Let us discuss each of them in detail.

a. Data is undervalued

In procedural language, emphasis is on doing things. Here data is given less
importance. Let us explain this with the help of an example. Assume that we have
to develop a software for automating the activities at our school. The activities may
include admitting a new student, removing a student, recording fee collection details
etc. Imagine we implemented the activities into the software using a function for
each activity. The data that may be required by most of these functions for their
functioning may be the student details stored in an array of structures. The easy way
of making this data available to all these functions is to declare the student array as
global (see section 10.5 of your Class XI textbook). Now the data is exposed and

Fig. 2.1: Procedural paradigm

44

Computer Science - XII

any function other than the function that requires this data may also access it and
make changes to the data knowingly or unknowingly as we cannot imply any
restrictions.

This is like leaving your assignment to be submitted the next day, over the dining
table. There are chances of this document getting destroyed, as a small child may
tear it or draw pictures on it or a cup of tea placed on the table may spill over it
accidentally. This can happen as the assignment is kept exposed in a place where
anybody can access it.

The arrangement of local variables, global
variables and functions in a procedural
programming paradigm is shown in Figure 2.2.
The green lines show which functions require a
particular data and red lines show illegal access
of data by functions that do not require it.

b. Adding new data element may require modifications to all/many functions

Since many functions access global data, the way the data is stored is important.
The arrangement of data cannot be changed without modifying all the functions
that access it. If we add new data items, we will need to modify all the functions that
access the data, so that they can also access the new items. It will be hard to find all
such functions, and even harder to modify all of them correctly.

For example, assume that we need to add an item named 'age' to the existing student
structure in our school software. For the proper functioning of the software, we
will have to find all functions that access the student data and incorporate proper
changes.

c. Creating new data types is difficult

Computer languages typically have several built-in data types like integer, float,
character and double. Certain programming language allows creation of data types
other than the built-in data type, which means they are extensible. The ability of a
program to allow significant extension of its capabilities, without major rewriting
of code or changes in its basic architecture is called extensibility. This feature
helps us in reducing the complexity of a program while extending its capabilities.
Procedural languages are not extensible.

d. Provides poor real world modelling

In procedural programming paradigm, functions and data are not considered as a
single unit and are independent of each other. So neither data nor functions in
procedure oriented paradigm, by themselves, cannot model real-world objects
effectively.

Fig. 2.2: Functions accessing data

2. Concepts of Object Oriented Programming

45

For example, in our school software, we have student data and functions that access
it. Similarly, assume that the software also maintains teacher data and functions
accessing this data. In procedural programming we may not be able to club student
data and the functions accessing it or teacher data with the functions accessing it.

Every real-world object that we deal with, have both characteristics and behaviour
bundled in a single unit. If we take the object 'humans' as an example, its
characteristics can be name, gender, nationality, etc. and behaviour can be speaking,
laughing, etc. Even though behaviour may be implemented as a function and
characteristics may be represented as data in a program, we are not able to club
data and functions. Therefore modelling things in the real world is difficult in
procedural programming.

In the next section, we will discuss Object-Oriented Paradigm and see how it tries
to eliminate the limitations of Procedure Oriented paradigm.

Know your progress

1. State whether the following three statements are true or false:

a. Global variables cannot be accessed in more than one
function.

b. Procedural programming resembles closeness to real world.

c. In procedural programming paradigm, data and functions
are not bound together.

2. Pick the procedural languages from the following.

C, C++, Fortran, JAVA, Pascal.

2.1.2 Object-Oriented Programming (OOP) paradigm

Object-oriented paradigm eliminates the problems in the procedural paradigm by
clubbing data and functions that operate on that data into a single unit. In OOP,
such a unit is called an object.

For example, by implementing OOP in
our school software, we can create a
Student object by clubbing student
data and its functions as well as Teacher
object by clubbing teacher data and its
functions. Now the functions of one
object will not be able to access the data
of other object without permission. Fig. 2.3: Objects containing data and functions

46

Computer Science - XII

Advantages of using OOP are:

a. OOP provides a clear modular structure for programs.

b. It is good for defining abstract data types.

c. Implementation details are hidden from other modules and have a clearly
defined interface.

d. It is easy to maintain and modify the existing code as new objects can be created
without disturbing the existing ones.

e. It can be used to implement real life scenarios.

f. It can define new data types as well as new operations for operators.

2.2 Basic concepts of OOP

Object Oriented Programming simplifies the software development and
maintenance by providing some concepts such as objects, classes, data abstraction,
data encapsulation, modularity, inheritance, polymorphism. Let us discuss these
concepts in detail.

2.2.1 Objects

Anything that we see around us can be treated as an object and all these objects
have properties (also called member/data/state) and behaviour (also called
methods/member functions). Some examples of objects are listed in Figure 2.4
with their properties and methods.

Fig. 2.4: Real world objects with their properties (state) and methods (behavior)

2. Concepts of Object Oriented Programming

47

When OOP is to be implemented to solve a programming problem, instead of
dividing the problem into functions we will have to think about dividing it into
objects. When thinking in terms of objects rather than functions, program designing
becomes easier, as there is a close match between objects in the program and objects
in the real world.

In OOP an object is obtained by combining data and functions acting upon the
data into a single unit. After combining, the functions inside an object are called
member functions and data is called member (see Figure 2.6).

2.2.2 Classes

An object is defined via its class which
determines everything about an object. A class
is a prototype/blue print that defines the
specification common to all objects of a
particular type. This specification contains the
details of the data and functions that act upon
the data. Objects of the class are called
individual instances of the class and any
number of objects can be created based on a
class (see Figure 2.5).

Fig. 2.5: Class and its Objects

Fig. 2.6: General form of declaring a class with example

Observe some real world objects around you, identify properties

each of them posseses and the behaviours eacht exibits. Write your

findings in the following table:

Let us do

Object Name Properties Behaviour

48

Computer Science - XII

The declaration and usage of class is almost similar to that of a structure. A structure
includes specifications regarding data, where as a class includes specification regarding
both data and functions that use the data (See Figure 2.6). A structure is declared
using the keyword 'struct', where as class is
declared using the keyword 'class'.

If Student is the name of a C++ class, to
create two objects named 'S1' and 'S2', (as in
Figure 2.7) declaration will be as follows:

Student S1,S2;
Fig. 2.7: Objects of Student class

Fig. 2.8: Objects passing
message

Know your progress

1. OOP stands for ________.
2. A blueprint for an object in OOP is called a ________.
3. The functions associated with the class are called ________.
4. The variables declared inside the class are known as ________.
5. What is the difference between structure and class?

Objects can be declared and created from a class using the statement.

Cube S; Or Cube *C;

C = new Cube;

where Cube is the name of the class and C is the name of the object.

Objects can communicate with each other by passing
message, which is similar to people passing message with
each other. This helps in building systems that simulate real

life. In OOP, calling member function of an object from

another object is called passing message. Message passing

involves specifying the name of object, the name of the

member function, and the information to be sent.

For example, in our school software, the Teacher object
to update the fees of a student, will pass a message to
Student object by calling the update_fee() member
function (See Figure 2.8) like

S1.update_fees("Rahul", 1000);

where S1 is an object of Student object.The Student object on reciving the
message will update the fees of the student with the data provided by the Teacher
object.

50

Computer Science - XII

Let us take a real life example of a television which we can turn on and off, change
the channel, adjust the volume, and add external components such as speakers,
VCRs, and DVD players, but we do not know about its internal details, that is, we
do not know how it receives signals over the air or through a cable, how it translates
them, and finally displays them on the screen.

Thus, we can say a television clearly separates its internal implementation from its
external interface and we can use its interfaces like the power button, channel selector,
and volume control without having any knowledge about its internal features.

Like this, C++ classes provide great level of data abstraction. They provide public
methods/functions to the outside world to use the functionality of an object and to
manipulate object data. These methods helps to manipulate objects from outside
without actually knowing how object has been implemented internally.

Data abstraction separates interface and implementation. Implementation denotes
how variables are declared, how functions are coded, etc. It is through interface
(function header/function signature) a communication is send to the object as
messages.

For example, in our school software, a member function e.g. show_student()
of Student object may be called without actually knowing what algorithm the
function uses internally to display the given values. At any time we can change the
implementation of show_student(), and the function call will still work as long
as long there is no change in the interface.

Data abstraction provides two important advantages:

• Class internals are protected from accidental user-level errors, which might
corrupt the state of the object.

• Any change in class implementation may be done over time in response to
changing requirements, without changing the statements of the class..

2.2.4 Data Encapsulation

All C++ programs are composed of two fundamental elements, functions and
data. Encapsulation is an OOP concept that binds together the data and functions
that manipulate the data, and keeps both data and function safe from outside
interference and misuse.

C++ implements encapsulation and data hiding through the declaration of a class.
A C++ class can contain private, protected and public members (See
Figure 2.6). By default, all items defined in a class are private. Members declared
under private section are not visible outside the class. Members declared as

2. Concepts of Object Oriented Programming

51

protected are visible to its derived class also (explained in Section 2.2.6) , but
not outside the class.

In Student class of our school software, the variables Regno, Name, Mark1,
Mark2, Mark3 and Fee are to be declared private. This means that they can be
accessed only by member functions of the Student class, and not by any other
part of our program. Here data is hidden and encapsulation is achieved.

To make parts of a class accessible to other parts of our program, we must declare
them under the public section. All variables or functions defined after the public
access specifier are accessible anywhere in our program. For example, in Student
class of our school software, all member functions in it that need to be called by
other objects are to be declared public, in order to make them visible outside the
class.

2.2.5 Modularity

When we write a program, we try to solve a problem by decomposing the problem
into small sub-problems and then try to solve each sub-problem separately. Solution
to each sub-problem is a separate component that includes interface, specification
and implementation.

Modularity is a concept through which a program is partitioned into modules that
can be considered and written on their own, with no consideration of any other
module. These modules are later linked together to build the complete software.
These modules communicate with each other by passing messages.

We have already studied in detail about implementing modularity using functions.
(See Chapter 10, Functions in class XI text book). In object oriented-programming,
modularity is implemented with the help of class.
For example, in our school software we can
separate everything related to students and
teachers into two separate modules (See Figure
2.9) using the concept of class.

2.2.6 Inheritance

Inheritance is the process by which objects of one class acquire the properties and
functionalities of another class. Inheritance supports the concept of hierarchical
classification and reusability.

Let us take a real life example to explain the scenario. In Figure 2.10, land vehicle
and water vehicle acquires the properties (i.e. data members and member
functions) of vehicle. Again car and truck acquires the properties of land

Fig. 2.9: Modularity

52

Computer Science - XII

vehicle (i.e. car/truck =

vehicle + land vehicle)

and boat acquires the properties

of water vehicle (i.e. boat

= vehicle + water

vehicle). In the case of

hovercraft which travels both

in land and water, it acquires the

properties of both land

vehicle and water vehicle (i.e. hovercraft = vehicle + land vehicle

+ water vehicle). A car can have further classification such as hatchback,

sedan, SUV etc., which will acquire the properties from car, land vehicle and

vehicle, but will still have some specific properties of its own. Thus, the level of

hierarchy can be extended to any level.

In the above example, if the common properties and functionalities of both land

vehicle and water vehicle were not separated and placed in vehicle, then it would

have to be repeated in both the classes. This would have increased the size of the

program and the time taken for coding and debugging. Keeping it in mind, if we

observe from top to bottom of the chart, we can understand how complexity is

reduced greatly through the introduction of inheritance.

Once a class is written, created and debugged, if needed, it can be distributed for

use in other programs. This is called reusability. In OOP, the concept of inheritance

provides an important extension to the idea of

reusability. Through this we can add additional

features to an existing class without modifying

it. This is made possible through deriving a new

class from the existing one. The new class will

inherit the capabilities of the old one, and can

add features of its own. The existing class is

called the base class, and the new class is

referred to as the derived class. The derived

class will have combined features of both the

classes. Any number of classes can be derived

from an existing class. Figure 2.11 shows the

concept of derivation of new classes.

Fig. 2.10: Inheritance in real world

Fig. 2.11: Inheritance in OOP

54

Computer Science - XII

Fig. 2.12: Types of inheritance

Fig. 2.14: Demonstration of
Polymorphism

Fig.: 2.13 Sample
Inheritance

Different forms of Inheritance are
Single Inheritance, Multiple
Inheritance, Multilevel Inheritance,
Hierarchical Inheritance, and
Hybrid Inheritance (see Figure 2.12).

Let us try to implement the concept of inheritance in our school
software. Assume that in addition to existing data and function,
we need to add new data - age of the student, and standard in
which the student is studying and a function to find the
examination result, to Student class. Instead of modifying the
existing Student class, we can derive a class named NewStudent
from the existing Student class, so that the Student class
remains undisturbed. Here Student is the base class and
NewStudent is the derived class (see Figure 2.13).

The syntax for declaring a derived class is as follows:
class derived_class: AccessSpecifier base_class

{

//declaration of members and member functions

 };

where derived_class is the name of the derived class and base_class is the
name of the class on which it is based. The AccessSpecifier may be public,
protected or private. This access specifier describes the access level for the
members that are inherited from the base class.

2.2.7 Polymorphism

'Poly' means many. 'Morph' means shapes.
So polymorphism can be defined as the
ability to express different forms. This is
demonstrated in Figure 2.14. Here the
same command "Now Speak" is issued to
all objects, but each object responds
differently to the same command.

In object-oriented programming,
polymorphism refers to the ability of a
programming language to process objects
differently depending on their data type or
class. More specifically, it is the ability to
redefine methods for derived classes.

2. Concepts of Object Oriented Programming

55

For example, given a base class
Shape, polymorphism enables the
programmer to define different area
methods for any number of derived
classes such as circle, rectangle
and triangle. No matter what
shape an object has, applying the
area method to it will return the
correct results.

There are two types of polymorphism.

a. Compile time (early binding/static)

polymorphism

b. Run time (late binding/dynamic)

polymorphism

a. Compile time polymorphism

Compile time polymorphism refers to the ability of the compiler to relate or bind

a function call with the function definition during compilation itself. Function

overloading and operator overloading comes under compile time polymorphism.

Function Overloading: Functions with the same name, but different signatures

can act differently. For example area(int) can be used to find the area of a

square whereas area(int, int) can be used to find the area of a rectangle.

Thus, the same function area() acts in two different ways depending on its signature.

Defining multiple functions with the same name and different function signatures is

known as function overloading.

Operator overloading: Operator overloading is the concept of giving new meaning

to an existing C++ operator (like +, -, =, * etc.). It makes it possible to use the

ordinary operator to exhibit different behaviors on different objects of a class,

depending on the types of operands it receives. To overload an operator, we need

to write a member function for the operator we are overloading.

For example, the + (plus) operator in C++ is already overloaded as it can do integer

addition (4 + 5) and floating point addition (3.14 + 2.6). If needed, we can add

additional functionality to it and make it add two objects. For example T1 = T2 +

T3, where T1, T2 and T3 are all objects of a class named 'time'. Here '+' may be

used to add two time sequences represented in HH:MM:SS format.

Fig.: 2.15 Example of Polymorphism

Fig.: 2.16 Classification of Polymorphism

56

Computer Science - XII

b. Run time polymorphism

Run time polymorphism refers to the binding of a function definition with the
function call during runtime. It uses the concept of pointers and inheritance.

Know your progress

1. The wrapping up of data and functions into a single unit is
referred to as _________.

2. Access to data is restricted by the feature known as _________.

3. Objects normally communicate with each other through
_________.

4. C++ supports _________ and _________ binding.

5. Late binding is also called _________.

6. Early binding is also called _________.

7. What are the different types of inheritance?

The following program implements function overloading, to find the area of a square

and a rectangle. It defines two functions, one to find the area of a square and the

other to find the area of a rectangle. Both functions are given the same name 'area'

but have different signatures.

#include<ciostream>

using namespace std;

int area(int s){ //To find the area of a square

return s * s;

}

int area(int s1, int s2){ //To find area of a

return (s1 * s2); //rectangle

}

int main()

{

cout << "Area of Square:" << area(5); << endl;

cout << "Area of Rectangle:"<< area (7,2);

}

Output:

Area of Square: 25

Area of Rectangle: 14

Function

names are

same

Signatures are

different

2. Concepts of Object Oriented Programming

57

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

Let us conclude

As software makes the computer a useful machine, the development and maintenance
of software requires special consideration. In order to make software development
more productive and to reduce maintenance costs, various methods/paradigms
have been tried. They are Structured paradigm, Procedural paradigm, Modular
paradigm and Object-oriented paradigm (OOP). Most of the latest and widely-
used programming languages follow OOP. OOP implements a problem using
objects that can communicate with each other. Here, data is given more importance
than in previous paradigms. To give maximum protection to data from unauthorised
access they are defined using various access specifiers and kept along with functions
that operate on the data. OOP also provides effective modularisation and features
to improve reusability and extensibility of a code, and can implement static and
dynamic polymorphism.

 Let us assess

1. Protecting data from unauthorised access is __________.

a. Polymorphism b. Encapsulation c. Data abstraction d. Inheritance

2. A base class may also be called __________.

a. Child class b. Subclass c. Derived class d. Parent class

3. Which of the following is not a type of inheritance?

a. Hybrid b. Multiple c. Multilevel d. Multiclass

4. Subclass is the same as:

a. Derived class b. Super class c. Base class d. None of these

5. Default access specifier is :

a. public b. private c. protected d. none

6. Which of the following is not an OOP concept?

a. Overloading b. Procedural programming

c. Data abstraction d. Inheritance

7. The ability of a message or data to be processed in more than one form is
called

a. Polymorphism b. Encapsulation c. Data hiding d. Inheritance

8. C++ is a __________ language.

a. Object based b. Non-procedural c. Object oriented d. Procedural

58

Computer Science - XII

9. Which of the following is not a characteristic of OOP?

a. It emphasizes procedure more than data.

b. It offers good real world modelling.

c. It wraps up related data items and associated functions in the unit.

d. None of these.

10. Which among the following is true about OOPs?

a. It supports data abstraction b. It supports polymorphism

c. It supports structured programming d. It supports all of these

11. What do you mean by programming paradigm? Name the programming
paradigms.

12. What are the limitations of procedural programming approaches?

13. What is object oriented-programming paradigm? List the basic concepts of
OOP.

14. How does OOP implemented in C++?

15. What is encapsulation?

16. Distingush between an object and a class?

17. What is a base class and a sub class? What is the relationship between base class
and subclass?

18. Explain the concept of data abstraction. Give an example.

19. Write a short note on inheritance.

20. To operate a car, we use behaviors such as steering, brakes, accelerator etc. All
we know is how to use these. We need not know what happens internally when
we apply these. Can you connect this with any of the OOP concept? Explain?

21. What do you mean by inheritance? How does this support 'reusability'?

22. What is polymorphism? Give an example to illustrate this feature.

23. Explain the concept of OOP with examples.

24. There is a plug point with a switch. What a switch "does", depends on what is
connected to the plug point, and the context in which it is used. Can you connect
this with any of the OOP concepts? Explain?

25. Let us assume there is a base class named 'LivingBeings' from which the
subclasses 'Horse', 'Fish' and 'Bird' are derived. Let us also assume that the
LivingBeings class has a function named 'Move', which is inherited by all
subclasses mentioned. When the Move function is called in an object of the
Horse class, the function might respond by displaying trotting on the screen.
On the other hand, when the same function is called in an object of the Fish
class, swimming might be displayed on the screen. In the case of a Bird object,
it may be flying. Can you connect this with any of the OOP concept? Explain?

