
Data Structures and
Operations

After the completion of this chapter, the

learner

• explains the concept of data

structure by citing examples.

• classifies data structures based on

different criteria.

• lists different operations on data

structures and explains them.

• explains the organisation of stack

data structure with the help of

examples.

• develops algorithms for push and

pop operations in a stack.

• explains the organisation of queue

data structure with the help of

examples .

• develops algorithms for insertion

and deletion operations in a linear

queue.

• identifies the advantage of circular

queue over linear queue.

• explains the concept of linked list

data structure and its advantages

over arrays and other static data

structures.

• develops procedures to create a

linked list and to perform traversal

operation.

W
hile solving problems using

computers, the data may have to

be processed in most of the

cases. These data may be of atomic

(fundamental) type or aggregate (grouped)

type. We know that variables are required

to refer to these data. Languages like C,

C++, Java, etc. insist on declaration of

variables before their use in the program.

We learnt that in C++, variables for atomic

type data are declared using fundamental

data types like int, char, float and

double or with their type modifiers. We have

also seen that grouped data are referred

using arrays and structures. Array is a

collection of homogeneous type of data,

whereas structure can be a collection of

different types of data.

This chapter presents the facilities of

programming languages to organise data in

groups based on different principles and

criteria. The amount of data that can be

accommodated in a group and the

operations performed on them vary

depending on the organising principle

followed in constituting each group of data.

3
Data Structures and

Operations

Significant Learning Outcomes

60

Computer Science - XII

3.1 Data Structure

Figure 3.1 shows some items in groups. Each group follows some kind of grouping
strategy. Can you identify the principle or format followed in arranging the items in
each group?

(a) Collection of toys (b) Collection of plates (c) CD Pack

(d) Queues

Fig. 3.1: Different ways of grouping

Figure 3.1(a) is a collection of toys. The toys are dumped together without any
specific order or arrangement. Figure 3.1(b) is a collection of plates in a stand. The
plates are placed one after the other. There is a limit for the number of plates that
can be placed in a stand. A new plate can be placed at any position in the stand if
there is space and any plate can be taken out from it. Figure 3.1(c) is a set of discs
in a CD pack. There is a limit to the number of discs in this collection also. A new
disc can be added in the collection only at the top. Similarly only the CD at the top
can be removed from the collection. Figure 3.1(d) shows queues in which a new
person (or a new auto rickshaw) can join the queue only at the rear end. The person
(or auto rickshaw) leaves the queue only from the front end. In this collection there
may not be a limit for the number of persons in the queue. But in some cases there
may be a limit in the size of the queue also.

The concept of data structure is similar to the collections in figures (b), (c) and (d)
in Figure 3.1. Figure 3.1(b) is a collection, which is very similar to an array that we
learnt in Class XI. So we say that array is a data structure. In Computer Science, a

3. Data Structures and Operations

61

data structure is a particular way of organising similar or dissimilar logically related
data items which can be processed as a single unit. Data structures not only allow
the user to combine various types of data but also allow processing of the group
as a single unit.

3.1.1 Classification of data structures

Data structures can be generally classified into simple data structures and compound
data structures. Figure 3.2 shows the detailed classification.

We are familiar with the simple data structures such as array and structure. We used
them in C++ programs to refer to a collection of elements. These simple data
structures are combined in various ways to form compound data structures. As
shown in Figure 3.2, compound data structure is further classified into linear and
non-linear. A data structure is said to be linear if its elements form a sequence. The
elements of a linear data structure can be represented by means of sequential memory
locations. A data structure is said to be non-linear if its elements do not form any
sequence in memory. In this type of data structure the elements are stored in random
memory locations and they need not be accessed in sequential order. Non-linear
data structures are more complex and hence you will study them in higher classes.
Linear data structures such as stack, queue and linked list will be presented in detail
in the coming sections.

Since data structures represent collections of data, these are closely related to
computer memory, as it is the storage space for the data. The memory may be
primary or secondary. Depending upon memory allocation, data structures may be
classified as static data structures and dynamic data structures. Static data
structures are associated only with primary memory. The required memory is
allocated before the execution of the program and the memory space will be fixed
throughout the execution. That is, the size of the data structure is specified during
the design and it cannot be changed later. Data structures designed or implemented

Fig. 3.2: Classification of data structures

62

Computer Science - XII

using arrays are static in nature. But for dynamic data structures, memory is allocated
during execution. Data structures implemented using linked lists are dynamic in
nature. The size of the collection will not be specified in advance; rather it grows or
shrinks during run-time as per user's desire. When we consider secondary memory
for the storage of data, it will be in the form of files. The size of such data files
increases on addition of data and reduces on deletion of data. So we can say that
files are also dynamic data structures.

3.1.2 Operations on data structures

The data represented by the data structures are processed by means of certain
operations. In fact, a particular data structure that one chooses for a given situation
depends largely on the frequency with which specific operations are performed.
The operations performed on data structures are traversing, searching, inserting,
deleting, sorting and merging. Let us have some basic idea about these operations.

a. Traversing

Traversing is an operation in which each element of a data structure is visited. The
travel proceeds from the first element to the last one in the data structure. Processing
of the visited element can be done according to the requirements of the problem.
Reading all the elements of an array is an example for traversing (Refer Chapter 8
of Computer Science Textbook for Class XI).

b. Searching

Searching, in the literal sense, is the process of finding the location of a particular
element in a data structure. Searching may also be a process of finding the locations
of all the elements satisfying one or more conditions. In other words, searching
implies accessing the values stored in the data structure. We learned two methods
for the search operation in an array in Class XI.

c. Inserting

Insertion is the operation in which a new data is added at a particular place in a data
structure. In some situation, where the elements in the data structure are in a particular
order, the position may need to be identified first and then the insertion is to be
done.

d. Deleting

Deletion is the operation in which a particular element is removed from the data
structure. The deletion is performed either by mentioning the element itself or by
specifying its position.

3. Data Structures and Operations

63

e. Sorting

We are familiar with the sorting of an array using two methods named bubble sort
and selection sort. It is the technique of arranging the elements in a specified order,
i.e., either in ascending or descending order. Sorting of elements in a data structure
makes searching faster.

f. Merging

Merging usually refers to the process of combining elements of two sorted data
structures to form a new one. But the simplest form of merging is the joining of
the elements of both the data structures into a third empty data structure. In the
case of an array, first, copy all the elements of one array into a third empty array,
and then append all the elements of the other array to those in the third array.

Searching, sorting and merging are three related operations which make the job of
retrieval of data from the storage devices easier, faster and efficient.

In Class XI, we learned the data structure array and how the operations given above
are performed. We also discussed the concept of structures and the way of
operations on their elements in Chapter 1 of this book. Now, let us discuss the
compound linear data structures stack, queue and linked list.

3.2 Stack

Have a close look at Figure 3.1(c) and also the collections shown in Figure 3.3. The
organisation of items in these groups is the same.

Fig. 3.3: Real life examples for stack

The collection is formed by adding each item one over the other. We can say that
the items are added at the top position. Similarly, we can remove only that item
which is placed at last. This organising principle is known as Last-In-First-Out (LIFO).
The data structure that follows LIFO principle is known as stack. It is an ordered
list of items in which all insertions and deletions are made at one end, usually called
Top. Since it follows the LIFO principle, the element added at last will be the first
to be removed from the stack.

Stack is a logical concept. There is no exclusive tool or facility in programming
languages to create a stack. A stack can be physically implemented by an array. Such

64

Computer Science - XII

a stack inherits all the properties of arrays. The size is
predetermined and hence it is static. Figure 3.4 is a stack
of integers implemented by an array STACK. This stack can
accommodate a maximum of 10 integers. The figure shows
that there are six elements at present and the last element is
56 at position 5. The last position is indicated by TOS (to
denote Top Of Stack). So, the value of TOS is 5. The last
element in a stack is always referred to by the expression
StackName[TOS]. In this case STACK[TOS] gives 56. Since we
utilise arrays of C++ for implementing stacks, the first
element will always be referred to by the subscript 0. Here
STACK[0] is 25.

3.2.1 Implementation of stack

It is mentioned that stack can be implemented using array. In such a case, there is a
limit to the number of elements that can be represented by the stack and it depends
on the size of the array. Initially, the value of TOS will be set to -1 (minus one) to
denote the fact that the stack is empty. Whenever an element is added (or inserted)
into the stack, the value of TOS will be incremented by 1 until it reaches the highest
subscript of the array. If an array STACK of N elements is used to implement a stack,
the values of Top can vary from 0 to (N-1) and the elements in the stack can be
referred to by the expressions STACK[0], STACK[1], STACK[2], ..., STACK[N-1].

3.2.2 Operations on stack

Though array is used to implement stack data structure, all the operations applicable
to array are not performed in the same fashion. For example in an array, insertion
and deletion operations can be performed at any position. But in stack, there is
restriction in the position. These operations are performed only at the top position.
The insertion and deletion operations on stack are known as push and pop
operations respectively. Let us discuss the procedure involved in these operations.

a. Push operation

As mentioned above, push operation is the process of inserting a new data item
into the stack. Even the creation of a stack itself is a repeated execution of push
operations.

Fig. 3.4: Stack of integers

Figure 3.5 shows the status of a stack during a sequence of push
operations. Let us assume that we have created an array and value of
TOS is set with -1. Now observe the figure and write down the
procedure to perform the operation.Let us do

3. Data Structures and Operations

65

Verify whether you could derive the following steps for push operation on a stack:

Step 1: Accept the value in a variable to insert into the stack.

Step 2: Increment the value of Top by 1.

Step 3: Store the value at the TOS position.

The above steps are valid only if there is free space for insertion. The stack shown
in Figure 3.5 cannot accommodate a new item when the value of TOS is 9. Once the
stack is full and if we attempt to insert an item, an impossible situation arises. This
is known as stack overflow. Now let us write an algorithm for push operation in a
stack.

Algorithm: To perform PUSH operation in a stack

Consider an array STACK[N] that implements a stack, where N is the maximum size
of the array. A variable TOS keeps track of top position of the stack. A data item
available in the variable VAL is to be added into the stack. The steps required for
push operation are given between the Start and Stop instructions.

Start

1: If (TOS < N) Then //Space availability checking (Overflow)

2: TOS = TOS + 1

3: STACK[TOS] = VAL

4: Else

5: Print "Stack Overflow "

6: End of If

Stop

Fig. 3.5: Status of stack after a sequence of push operations

66

Computer Science - XII

a. Pop operation

The process of deleting an element from the top of a stack is called Pop operation.
After every pop operation the value of TOS is decremented by one.

Fig. 3.6: Status of stack after a sequence of pop operations

You might have derived the following steps for pop operation:

Step 1: Retrieve the element at the TOS into a variable.

Step 2: Decrement the value of TOS by 1.

These two steps will work when there are elements in the stack. During the pop
operation in an array stack, the element is not physically removed, but the access is
restricted by decrementing the value of TOS. The stack shown in Figure 3.6 can be
given for pop operation until the element at position 0 is deleted. After the deletion
of that last element, the value of TOS becomes -1. Now the stack is empty and if we
try to delete an item from the stack, an unfavourable situation arises. This situation
is known as stack underflow. Now let us write an algorithm for pop operation in a
stack.

Algorithm: To perform POP operation in a stack

Consider an array STACK[N] that implements a stack that can store a maximum of N
elements. A variable TOS keeps track of the top position of the stack. The data item
retrieved from the stack may be kept in a variable, say VAL. The steps required for
pop operation are given between the Start and Stop instructions.

Let us try ourselves to derive the steps for deleting the element at
the top of a stack. Figure 3.6 is given to you for reference. Observe
the figure and write down the steps for pop operation.

Let us do

3. Data Structures and Operations

67

Start

1: If (TOS > -1) Then //Empty status checking (Underflow)

2: VAL = STACK[TOS]

3: TOS = TOS - 1

4: Else

5: Print "Stack Underflow "

3: End of If

Stop

void push(int stack[],int val)

{

if (tos < n)

{

tos++;

stack[tos]=val;

}

else

cout<<“Overflow”;

}

POP operationPUSH operation

int pop(int stack[])

{

int val;

if (tos > -1)

{

val=stack[tos];

tos--;

}

else

cout<<“Underflow”;

return val;

}

C++ functions for stack operations

The variables tos and n are assumed as global variables

Application of Stacks

Since stacks follow the LIFO principle, they are used for applications

such as reversing a string, creating polish strings, evaluation of polish

strings etc. Reversing a string involves the formation of a string by

reversing the characters of the original string. For example, "SAD" is a string and its

reversed string is "DAS". Polish string is an arithmetic expression, in which operator is

placed before the operands or after the operands. For example, the arithmetic

expression A+B can be converted into AB+ or +AB. The expression A+B is familiar to us

and is known as infix expression. The expression AB+ or +AB is the required format

for Arithmetic Logic Unit (ALU) of the computer and are known as postfix expression

and prefix expression, respectively. These conversions are carried out in the computer

with the help of push and pop operations. The prefix or postfix version of an arithmetic

expression is also evaluated using these stack operations by ALU.

68

Computer Science - XII

3.3 Queue

In many situations we might have become part of a queue. Figure 3.7 shows a
queue in a polling station, where the voter at the front position cast his/her vote
first and a new person can join the queue at the rear position. It is clear that, the first
voter in the queue will come out first from the queue. This style of oraganising a
group is said to follow the First-In-First-Out (FIFO) principle. So, we can say that
a data structure that follows the FIFO principle is known as a queue. As we can see
in the figure a queue has two end points - front and rear. Inserting a new data item in

a queue will be at the rear
position and deleting will
be at the front position.
Queue is also a logical
concept. It can be
physically implemented
by an array and such a
queue is static in nature.

3.3.1 Implementation of queue

When a queue is implemented by an array, there is a limit for the number of elements
that can be represented by it. Figure 3.8 is a queue of integers implemented by an
array QUEUE, which can accommodate a maximum of 10 integers. The figure shows
that there are five elements in the queue stored from positions 0 to 4. So, the value
of Front is 0 and that of Rear is 4. The first element of this queue is always referred
to by QUEUE[Front] and that last element by QUEUE[Rear].

Fig. 3.7: Queue in a polling station

Fig. 3.8: Queue implemented by array

The highest value allowed to Rear is 9 as it is the last subscript of the array. Initially,
the value of Front and Rear would have been -1, which indicates that the queue is
empty. When the first element is inserted into the queue, the values of these end
points will be set to 0. Thereafter, whenever an element is inserted, the value of
Rear will be incremented by 1, until it reaches the highest subscript (here it is 9).
Similarly on each deletion, the value of Front will be incremented by 1, until it
crosses the value of Rear.

3. Data Structures and Operations

69

3.3.2 Operations on queue

As in the case of stacks, there are some restrictions in the insertion and deletion
operations on queues. In an ordinary array, insertion and deletion operations are
performed at any position and in stacks these operations are performed only at the
top position. But in the case of queue, insertion and deletion operations are done at
different end points.

a. Insertion operation

Insertion is the process of adding a new item into a queue at the rear end. The
value of Rear is incremented first to point to the next location and the element is
inserted at that position. Even the creation of a queue is accomplished by performing
the insertion operation repeatedly.

Figure 3.9 shows the status of a queue during a sequence of insertion
operations. Let us assume that we have created an array and value of
Front and Rear are set to -1. Now, observe the figure and write down
the procedure to perform the operation.Let us do

70

Computer Science - XII

Now check whether you could derive the following steps for the insertion operation

Step 1: Accept the value in a variable for inserting into the queue.

Step 2: Increment the value of Rear by 1.

Step 3: Store the value at the Rear position.

Note that during the first insertion operation in the empty queue, the values of
both Front and Rear are incremented, i.e., they are set to 0. Thereafter, only the Rear

is incremented. This can be continued until Rear becomes 9 (the last subscript of
the array). The attempt of next insertion causes queue overflow as in the case of
stack. Now, let us write an algorithm for insertion operation in a queue.

Algorithm: To perform INSERTION operation in a queue

Consider an array QUEUE[N] that implements a queue, where N is the maximum size
of the array. The variables FRONT and REAR keep track of the front and rear positions
of the queue. A data item available in the variable VAL is to be inserted into the
stack. The steps required for insertion operation are given between the Start and
Stop instructions.

Start

1: If (REAR == -1) Then //Empty status checking

2: FRONT = REAR = 0

3: Q[REAR] = VAL

4: Else If (REAR < N) Then //Space availability checking

5: REAR = REAR + 1

6: Q[REAR] = VAL

7: Else

8: Print "Queue Overflow "

9: End of If

Stop

Fig. 3.9: Status of a queue after a sequence of insertion operations

3. Data Structures and Operations

71

b. Deletion operation

Deletion operation is the removal of the item at the front end. After the deletion,
the value of Front is incremented by 1. In the case of array queue, the item is not
physically removed, rather its access is denied by incrementing the value of Front.

Could you derive the following steps for deletion operation?

Step 1: Retrieve the element at the Front position into a variable.

Step 2: Increment the value of Front by 1.

According to Figure 3.10, there is no shifting of elements towards the front as you
may expect. The queues in real life situations may conflict with this concept. But in
queue data structure, deletion operation does not cause a shift of elements; rather
the value of Front is incremented by 1. The two steps derived will be enough as
long as there is element in the queue. Look at the status of the queue after the
deletion of 2nd element. Front and Rear point to the same element, which is at subscript
2. Assume that, one more deletion is carried out in the queue. According to the
procedure the value of Front becomes 3, which is greater than that of Rear. We
know that it is not reasonable. We can also see that the queue is now empty.
Remember that, the value of Front and Rear is -1 when the queue is empty. So we
have to include a step to reset the values of Front and Rear as -1 when the last
element is deleted from the queue. In this state, further deletion cannot be allowed.

Fig. 3.10: Status of a queue after a sequence of dequeue operations

Assume that we have a queue implemented by an array. Figure 3.10
shows the status of this queue during a sequence of deletion
operations. Let us try to derive the steps for the operation ourselves.

Let us do

72

Computer Science - XII

If an attempt is made to delete an item from an empty queue, the situation is called
queue underflow. Now let us develop a complete algorithm for deletion operation
on a queue.

Algorithm: To perform DELETION operation in a queue

Consider an array QUEUE[N] that implements a queue with a maximum of N elements.
The variables FRONT and REAR keep track of the front and rear positions of the
queue. The data item removed from the queue will be stored in the variable VAL.
The steps required for deletion operation are given between the Start and Stop

instructions.

Start

1: If (FRONT > -1 AND FRONT < REAR) Then // Empty status checking

2: VAL = Q[FRONT]

3: FRONT = FRONT + 1

4: Else

5: Print "Queue Underflow "

6: End of If

7: If (FRONT > REAR) Then // Checking the deletion of last element

8: FRONT = REAR = -1

9: End of If

Stop

void ins_q(int queue[],int val)

{

if (rear == -1)

{

front=0;

rear=0;

q[rear]=val;

{

else (if rear < n)

{

rear++;

q[rear]=val;

}

else

cout<<"Overflow";

}

DELETION operationINSERTION operation

int del_q(int queue[])

{

int val;

if (front > -1)

{

val=q[front];

front++;

}

else

cout<<"Underflow";

if (front > rear)

{

front= -1;

rear= -1

}

return val;

}

C++ functions for queue operations

The variables n, front and rear are assumed as global variables

3. Data Structures and Operations

73

3.3.3 Circular queue

Queues we discussed so far are known as linear queues. The elements are arranged
in a row or line. The two ends of such queues never meet at any point. There is a
drawback in linear
queue. Consider the
queue shown in Figure
3.11 in which six
deletion operations are
done. At present, there
are only three elements.
Obviously, the value of
Front is 6 and that of
Rear is 8.

Even though the first six locations are free, we
can insert only one element according to the
insertion algorithm. Imagine the worst situation
that there is only one element at the last position
of the queue (say at 9). If we try an insertion
operation in this queue, there will be overflow
situation. This limitation of linear queue can
be overcome by circular queue. It is a queue in
which the two end points meet as shown in
Figure 3.12.

Assume that two deletions are performed at this
stage. So the value of Front will be 2 and now
we have four free locations as shown in Figure
3.13(a). The subscripts of these position are 6,
7 and then 0, 1. If we insert two elements one by
one, the value of Rear becomes 7, but still we
have two free locations with subscripts 0 and 1,

Application of Queues

Mostly the queue concept in computer applications occurs in job

scheduling. The computer operating systems use this queue concept in

scheduling the memory, processor and the files. Print queue is an example

of job scheduling. Since the printer is slow compared to the processor, the print jobs

submitted by the user are put in the print buffer. The jobs are organised in the buffer

following the FIFO principle and thus the print buffer becomes a queue.

Fig.3.12: Circular queue

Fig.3.13(a): Circular queue after
deletion

Fig. 3.11: Queue with three elements after a sequence of six deletion
operations

74

Computer Science - XII

Fig.3.13(c): Rear takes the lower bound valueFig.3.13(b): Rear gets its highest value

as shown in Figure 3.13(b). So insertion operation can be performed again. This
time the value of Rear should be set with 0 first and then insertion is to be carried
out. Figure 3.13(c) shows this status of the queue.

Know your progress

1. Define data structure.

2. Stack follows __________ principle for oraginsing data.

3. Name the data structure that follows FIFO principle.

4. What is meant by underflow?

5. Which element of stack can be deleted (First or Last)?

3.4 Linked list

Linked list is a collection of data items where there is no limit in the number of
items. Stacks and queues discussed in the previous sections are merely logical
concepts, which are physically implemented using arrays. So these implementations
are static. But linked list is a dynamic data structure. It grows as and when new data
items are added in the list and shrinks whenever any data is removed from the list.
Memory will not be allocated in advance for the entire list. The memory allocation
takes place during the execution time just when a new item is about to insert in the
list. That is why it is considered as an example for dynamic data structure. Another
difference compared to array based data structures is that the elements in the linked
list are scattered in the memory. But they are linked with pointers. As we learnt in
Chapter 1, pointer is a variable that contains the address of a memory location. So
it is clear that an element in a linked list consists of data and an address. Such an
element is known as node. The address contained in the node is known as link.

3. Data Structures and Operations

75

So, a linked list is a collection of nodes, where each node consists of a data and a
link - a pointer to the next node in the list. That is, the first node in the list contains
the first data item and the address of the second node; the second node contains
the second data and the address of the third node; and so on. The last node at a
particular stage contains the last data in the list and a null pointer, i.e., a pointer that
points to nowhere. Now, a question arises. Where will the address of the first node
be? There is a special pointer associated with each linked list, known as Start or
Header and it contains the address of the first node. Figure 3.14 shows a linked list
of five numbers.

The figure shows that each node in the linked list consists of a number as its data
and a pointer as the link that points to the next node. The size of all the nodes will
be the same. That is, memory space allocated for each node will be of the same size.

3.4.1 Implementation of linked list

We have seen that linked list is a collection of nodes and each node is allocated
memory space. The memory location for a node consists of at least two types of
data, one is the actual data item and the other is a pointer to the memory location
for the next node. In Chapter 1, we learnt that structure is a user-defined data type
consisting of different types of data. The element of a structure can be a pointer
and it may even be a pointer to the same structure. We call such a structure a self
referential structure. So, linked list is created with the help of self referential structures.
The nodes in the linked list in Figure 3.14 can be designed using the following self
referential structure:

struct Node

{

int data;

Node *link;

};

As we can see, the name of the structure is Node and the second element is a
pointer to the same structure type Node. The special pointer Start that points to
the first node can be created using the following statement:

struct Node * Start; or Node *Start;

Fig. 3.14: Linked list with five nodes

76

Computer Science - XII

Figure 3.15 shows a linked list of
strings. The data of the nodes will
be filled with strings and link with
addresses of other nodes. Note
that the addresses are only
assumed numbers. The following
structure can represent these
nodes:

struct Node

{

char data[10];

Node *link;

};

It is assumed that memory location at address 1000 is allocated during run-time for

the first node and hence the pointer Start contains 1000. The data part of this

node is filled with a name "Sonu". The second node is given memory space at

location 1200 and its data part is filled with another name "Nived". Being the second

node, its address is stored in the link part of the first node. As seen in the figure, the

last node contains null pointer.

3.4.2 Operations on linked list

All operations specified in Section 3.1.2 can be performed in linked lists without

any restrictions. But we will discuss only the creation, traversal, insertion and deletion

operations only. You will learn the remaining operations during higher studies.

a. Creation of linked list

We have to define a suitable self referential structure in the beginning. A pointer

variable say Start or Header is then declared and initialised with NULL value. Now

we start creating a linked list by dynamically allocating memory for the nodes

according to the requirements. In Chapter 1, we learnt that when memory is

dynamically allocated, an address is be returned. This address is stored in a pointer

variable and using this variable the location can be accessed.

Fig.3.15: Implementation of a linked list

Figure 3.16 shows the status of a linked list during its creation. Let
us assume that we have defined a self referential structure named
Node and initialised a Node type pointer Start with NULL. Now observe
the figure and write down the procedure to create a linked list.Let us do

3. Data Structures and Operations

77

Fig. 3.16: Sequence of operations to create a linked list

Could you develop the following steps?

Step 1: Create a node and obtain its address.

Step 2: Store data and NULL in the node.

Step 3: If it is the first node, store its address in Start.

Step 4: If it is not the first node, store its address in the link part of the previous

node.

Step 5: Repeat the steps 1 to 4 as long as the user wants.

Actually the creation of linked list can be viewed as repeated insertion operations
at the end of a linked list. Insertion of the second node onwards requires a traversal
operation in the list to get the address of the last node in the current list. So let us
discuss the traversal operation.

b. Traversing a linked list

We know that traversal means visiting all the elements in a data structure. In the
case of a linked list, we begin traversal from the first node. The pointer Start gives

78

Computer Science - XII

the address of the first node, so that we can access the data part using arrow (->)
operator. Then we access the link part of the first node, which is the address of the
second node. Using this address we can access the data and link of the second
node. This process is continued until we found NULL pointer in the link of a node.

Let us observe Figure 3.17 and derive the steps required for traversal
operation in a linked list. It is assumed that Temp is a pointer of
Node type and Val is a variable to store the data read from a node.

Let us do

3. Data Structures and Operations

79

Check whether you could derive the following steps:

Step 1: Get the address of the first node from Start and store it in Temp.

Step 2: Using the address in Temp, get the data of the first node and store in Val.

Step 3: Also get the content of the link part of this node (i.e., the address of the next

node) and store it in Temp.

Step 4: If the content of Temp is not NULL, go to step 2; otherwise stop.

The above steps are required in the creation of a linked list in case Start is not NULL.
In such a case, we have to find the address of the last node for storing the address
of the new node in its link. The traversal operation begins from the first node by
procuring its address from Start. This address will be copied into a temporary pointer
variable (Temp in the figure) and it will be updated by copying the content of the
link of the node pointed to by Temp. The visit will be continued until the link of a
node pointed by Temp shows NULL value.

c. Insertion in a linked list

Insertion of an item in a linked list is the process of placing the node containing the
item in a particular position. As in the case of arrays, a node can be inserted anywhere
in a linked list - at the beginning, at the end or in between any two nodes. Once a
new node is created, it can be inserted at the beginning by copying the content of
Start into the link part of the new node and the address of the new node into Start.
Similarly to insert a node at the end, we have to copy the address of the new node
into the link part of the last node. Let us try to inert a node at a specified position.

Fig. 3.17: Traversal operation in a linked list

Figure 3.18 shows a series of operations to be performed to insert
a node at the 3rd position in a linked list that has three nodes initially.
Observe the figure and let us derive the steps required for insertion
operation in a linked list. It is assumed that Temp, PreNode and
PostNode are pointers of Node type structure. Let POS be a variable
that contains the position value where the node is to be inserted.

Let us do

80

Computer Science - XII

Fig. 3.18: Insertion operation in a linked list

3. Data Structures and Operations

81

The following steps can be developed for the insertion operation:

Step 1: Create a node and store its address in Temp.

Step 2: Store the data and link part of this node using Temp.

Step 3: Obtain the addresses of the nodes at positions (POS-1) and (POS+1) in the

pointers PreNode and PostNode respectively, with the help of a traversal

operation.

Step 4: Copy the content of Temp (address of the new node) into the link part of

node at position (POS-1), which can be accessed using PreNode.

Step 5: Copy the content of PostNode (address of the node at position POS+1) into

the link part of the new node that is pointed to by Temp.

d. Deletion from a linked list

Deletion of an item from a linked list is the process of removing a node from the
list. The position of the node to be removed will be given. Instead of this, if the
data item is given, the node containing that item is to be searched and its position is
to be noted. Then we apply the steps for removal operation. Any node can be
removed from a linked list. To remove the first node, we have to copy the content
in the link part of the first node into Start. The last node can be removed by assigning
the NULL value to the link part of the second last node. Let us discuss the procedure
to remove a node from a given position.

Figure 3.19 illustrates the procedure for the removal of 3rd node
from the linked list having four nodes initially. Observe the figure
and try to develop the steps required for deletion operation. It is
assumed that PreNode and PostNode are pointers of Node type
structure. Let POS be a variable that contains the position of the
node to be removed.

Let us do

82

Computer Science - XII

Fig. 3.19: Deletion operation in a linked list

The figure may help you derive the following steps for the deletion operation:

Step 1: Obtain the addresses of the nodes at positions (POS-1) and (POS+1) in the

pointers PreNode and PostNode respectively, with the help of a traversal

operation.

Step 2: Copy the content of PostNode (address of the node at position POS+1) into

the link part of the node at position (POS-1), which can be accessed using

PreNode.

Step 3: Free the node at position POS.

If we apply the first two steps in the linked list illustrated in Figure 3.19, even after
the delinking of the 3rd node from the 2nd one, the presence of the 3rd node will be
still there in the memory, pointing to the 4th node. So it should be freed using
memory de-allocation facility provided by the programming language.

While implementing operations in linked lists, the temporary pointers like TEMP,
PreNode, PostNode, etc. should also be freed after the operations.

Know your progress

1. Name an example for dynamic data structure.

2. What is linked list?

3. A node of a linked list consists of _____ and _____.

4. Which is the facility of programming language used to define the
node of a linked list?

5. What is the content of Start or Header in a linked list?

3. Data Structures and Operations

83

Stacks and queues can be implemented using linked list too, which results

into dynamic stacks and queues. The linked lists we have discussed are

singly linked list, in the sense that a node can point to the next node only.

But there are doubly linked lists, in which each node points to the next

node as well as the previous node. It is made possible by including two pointers in the

self referential structure. Complex data structures like tree are created using doubly

linked lists.

123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678
123456789012345678901234567890121234567890123456789012345678901212345678

Let us conclude

We are familiarised with the concept of data structures and the operations performed
on them. There is a variety of data structures, so that any kind of data can be
represented using a suitable one. The operations also vary depending on the
oraganising principle followed in grouping the elements. Though some of the data
structures are logical concepts, we have discussed their physical implementations.
The difference between the array and linked list implementations has been mentioned
during the discussion. The concepts covered in this chapter are the essential and
important basics for your higher studies in Computer Science.

 Let us assess

1. Read the following statements:

(i) A collection of data processed as a single unit.

(ii) All data structures are implemented using arrays.

(iii) Stacks and queues are logical concepts and implemented using arrays and
linked lists.

(iv) Overflow occurs in the case of static data structures.

Which of the above statements are true? Choose the correct options from the
following:

a. Statements (i) and (iii) only b. Statements (i), (ii) and (iii) only

c. Statements (i), (iii) and (iv) only d. Statements (i), (ii) and (iv) only

2. Data structures may be static or dynamic.

a. Give two examples for static data structures.

b. Static data structures may face overflow situation. Why?

c. Linked list is a dynamic data structure. Justify this statement.

3. Write an algorithm to insert an element into a stack.

4. What is meant by push and pop operations?

84

Computer Science - XII

5. Write an algorithm to delete an element from a stack.

6. Write algorithms to perform insertion and deletion operations in linear queues.

7. How does circular queue overcome the limitation of linear queue?

8. Some of the operations performed on data structures are given below:

i. Insertion ii. Deletion iii. Searching iv. Sorting

a. Which of these operations may face underflow situation?

b. Explain this situation in the context of an appropriate data structure.

9. Match the following:

A B C

a. Array i. Start 1. Insertion and deletion at different ends

b. Stack ii. Subscript 2. Insertion and deletion at the same end

c. Queue iii. Rear 3. Self referential structure is utilized

d. Linked list iv. Top 4. Elements are accessed by specifying its position

10. Explain why linked lists do not face overflow situation as in the case of array
based data structures.

